1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: KdTreeBasedKmeansClusteringMethod.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __KdTreeBasedKmeansClusteringMethod_h
#define __KdTreeBasedKmeansClusteringMethod_h
#include <time.h>
#include "itkMacro.h"
#include "itkArray.h"
#include "itkVector.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "MinimumEuclideanDistanceClassifier.h"
template< class TKdTree >
class KdTreeBasedKmeansClusteringMethod
{
public:
KdTreeBasedKmeansClusteringMethod() ;
~KdTreeBasedKmeansClusteringMethod() {}
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >
KmeansEstimatorType ;
typedef MinimumEuclideanDistanceClassifier< typename TKdTree::SampleType >
ClassifierType ;
typedef itk::hash_map< typename TKdTree::InstanceIdentifier,
unsigned int > ClusterLabelsType ;
typedef itk::Array< double > ParametersType ;
void SetInitialParameters(ParametersType& parameters)
{ m_InitialParameters = parameters ; }
void SetMaximumIteration(unsigned int numberOfIterations)
{ m_MaximumIteration = numberOfIterations ; }
void SetKdTree(TKdTree* tree)
{ m_KdTree = tree ; }
void Run() ;
unsigned int GetLastIteration()
{ return m_LastIteration ; }
ParametersType& GetEstimatedParameters()
{ return m_EstimatedParameters ; }
ClusterLabelsType* GetClusterLabels()
{ return m_Classifier.GetClassLabels() ; }
double GetTotalElapsedTime()
{ return double(m_ProcessEnd - m_ProcessBegin) / CLOCKS_PER_SEC ; }
double GetEstimationElapsedTime()
{ return double(m_EstimationEnd - m_ProcessBegin) / CLOCKS_PER_SEC ; }
private:
/** inputs */
TKdTree* m_KdTree ;
unsigned int m_NumberOfClusters ;
ParametersType m_InitialParameters ;
unsigned int m_MaximumIteration ;
/** outputs */
ParametersType m_EstimatedParameters ;
unsigned int m_LastIteration ;
time_t m_ProcessBegin ;
time_t m_EstimationEnd ;
time_t m_ProcessEnd ;
/** helper classes */
KmeansEstimatorType::Pointer m_KmeansEstimator ;
ClassifierType m_Classifier ;
} ; // end of class
#ifndef ITK_MANUAL_INSTANTIATION
#include "KdTreeBasedKmeansClusteringMethod.txx"
#endif
#endif // __KdTreeBasedKmeansClusteringMethod_h
|