1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: KdTreeBasedKmeansClusteringMethod.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __KdTreeBasedKmeansClusteringMethod_txx
#define __KdTreeBasedKmeansClusteringMethod_txx
#include "KdTreeBasedKmeansClusteringMethod.h"
template< class TKdTree >
KdTreeBasedKmeansClusteringMethod< TKdTree >
::KdTreeBasedKmeansClusteringMethod()
{
m_KmeansEstimator =
KmeansEstimatorType::New() ;
}
template< class TKdTree >
void
KdTreeBasedKmeansClusteringMethod< TKdTree >
::Run()
{
// classifier.SetComponentClassLabels(classLabels) ;
m_KmeansEstimator->SetKdTree(m_KdTree) ;
m_KmeansEstimator->SetMaximumIteration(m_MaximumIteration) ;
// m_KmeansEstimator->SetCentroidPositionChangesThreshold(0.0) ;
m_KmeansEstimator->SetParameters(m_InitialParameters) ;
m_ProcessBegin = clock() ;
m_KmeansEstimator->StartOptimization() ;
m_EstimationEnd = clock() ;
m_EstimatedParameters = m_KmeansEstimator->GetParameters() ;
m_LastIteration = m_KmeansEstimator->GetCurrentIteration() ;
m_Classifier.SetSample(m_KdTree->GetSample()) ;
m_Classifier.SetParameters(m_EstimatedParameters) ;
m_Classifier.GenerateData() ;
m_ProcessEnd = clock() ;
}
#endif
|