1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: MinimumEuclideanDistanceClassifier.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __MinimumEuclideanDistanceClassifier_txx
#define __MinimumEuclideanDistanceClassifier_txx
#include "MinimumEuclideanDistanceClassifier.h"
template< class TSample >
MinimumEuclideanDistanceClassifier< TSample >
::MinimumEuclideanDistanceClassifier()
{
m_Sample = 0 ;
m_NumberOfClasses = 0 ;
m_InternalClassifier = ClassifierType::New() ;
m_DecisionRule = DecisionRuleType::New() ;
m_InternalClassifier->SetDecisionRule((itk::DecisionRuleBase::Pointer) m_DecisionRule) ;
}
template< class TSample >
MinimumEuclideanDistanceClassifier< TSample >
::~MinimumEuclideanDistanceClassifier()
{
}
template< class TSample >
void
MinimumEuclideanDistanceClassifier< TSample >
::SetSample(TSample* sample)
{
if ( m_Sample != sample )
{
m_Sample = sample ;
m_InternalClassifier->SetSample(sample) ;
}
}
template< class TSample >
void
MinimumEuclideanDistanceClassifier< TSample >
::SetParameters(ParametersType& parameters)
{
if ( m_Parameters != parameters )
{
m_Parameters = parameters ;
m_NumberOfClasses = m_Parameters.Size() / TSample::MeasurementVectorSize ;
m_InternalClassifier->SetNumberOfClasses(m_NumberOfClasses) ;
for (int i = 0 ; i < m_NumberOfClasses ; i++)
{
m_FunctionVector.push_back(DistanceFunctionType::New()) ;
m_InternalClassifier->AddMembershipFunction(m_FunctionVector[i]) ;
}
}
}
template< class TSample >
void
MinimumEuclideanDistanceClassifier< TSample >
::SetComponentClassLabels(std::vector< unsigned int >& classLabels)
{
m_ComponentClassLabels = classLabels ;
m_InternalClassifier->SetMembershipFunctionClassLabels(m_ComponentClassLabels) ;
}
template< class TSample >
MinimumEuclideanDistanceClassifier< TSample >::ClassLabelsType*
MinimumEuclideanDistanceClassifier< TSample >
::GetClassLabels()
{
return m_InternalClassifier->GetOutput()->GetClassLabels() ;
}
template< class TSample >
void
MinimumEuclideanDistanceClassifier< TSample >
::GenerateData()
{
DistanceFunctionType::OriginType mean ;
int paramIndex = 0 ;
for (unsigned int i = 0 ; i < m_NumberOfClasses ; i++)
{
for (unsigned int j = 0 ; j < TSample::MeasurementVectorSize ; j++)
{
mean[j] = m_Parameters[paramIndex] ;
++paramIndex ;
}
(m_FunctionVector[i])->SetOrigin(mean) ;
}
m_InternalClassifier->Update() ;
}
#endif
|