File: itkScalarImageKmeansImageFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (273 lines) | stat: -rw-r--r-- 8,284 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  /*=========================================================================

    Program:   Insight Segmentation & Registration Toolkit
    Module:    itkScalarImageKmeansImageFilter.txx
    Language:  C++
    Date:      $Date$
    Version:   $Revision$

    Copyright (c) Insight Software Consortium. All rights reserved.
    See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

       This software is distributed WITHOUT ANY WARRANTY; without even 
       the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
       PURPOSE.  See the above copyright notices for more information.

  =========================================================================*/
#ifndef __itkScalarImageKmeansImageFilter_txx
#define __itkScalarImageKmeansImageFilter_txx

#include "itkScalarImageKmeansImageFilter.h"
#include "itkImageRegionExclusionIteratorWithIndex.h"

#ifdef ITK_USE_REVIEW_STATISTICS
#include "itkDistanceToCentroidMembershipFunction.h"
#endif

#include "itkProgressReporter.h"

namespace itk
{

template <class TInputImage, class TOutputImage>
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>
::ScalarImageKmeansImageFilter()
{
  m_UseNonContiguousLabels = false;
  m_ImageRegionDefined = false;
}

template <class TInputImage, class TOutputImage>
void ScalarImageKmeansImageFilter<TInputImage, TOutputImage>
::SetImageRegion( const ImageRegionType & region )
{
  m_ImageRegion = region;
  m_ImageRegionDefined = true;
}


  
template< class TInputImage, class TOutputImage >
void
ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
  typename AdaptorType::Pointer adaptor = AdaptorType::New();

  // Setup the regions here if a sub-region has been specified to restrict
  // classification on.. Since this is not ThreadedGenenerateData, we are
  // safe...
  if( m_ImageRegionDefined )
    {
    typename RegionOfInterestFilterType::Pointer regionOfInterestFilter 
      = RegionOfInterestFilterType::New();
    regionOfInterestFilter->SetRegionOfInterest( m_ImageRegion );
    regionOfInterestFilter->SetInput( this->GetInput() );
    regionOfInterestFilter->Update();
    adaptor->SetImage( regionOfInterestFilter->GetOutput() );
    }
  else
    { 
    adaptor->SetImage( this->GetInput() );
    }

  typename TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();

  treeGenerator->SetSample( adaptor );
  treeGenerator->SetBucketSize( 16 );
  treeGenerator->Update();

  typename EstimatorType::Pointer estimator = EstimatorType::New();

  const unsigned int numberOfClasses = this->m_InitialMeans.size();

  ParametersType  initialMeans( numberOfClasses );
  for(unsigned int cl=0; cl<numberOfClasses; cl++)
    {
    initialMeans[cl] = this->m_InitialMeans[cl];
    }

  estimator->SetParameters( initialMeans );
    
  estimator->SetKdTree( treeGenerator->GetOutput() );
  estimator->SetMaximumIteration( 200 );
  estimator->SetCentroidPositionChangesThreshold(0.0);
  estimator->StartOptimization();

  this->m_FinalMeans = estimator->GetParameters();

  typedef typename InputImageType::RegionType RegionType;
  typedef typename InputImageType::SizeType   SizeType;


  // Now classify the samples
  //

  DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
  typename ClassifierType::Pointer classifier = ClassifierType::New();

  classifier->SetDecisionRule( decisionRule.GetPointer() );
#ifdef ITK_USE_REVIEW_STATISTICS
  classifier->SetInput( adaptor );
#else
  classifier->SetSample( adaptor );
#endif

  classifier->SetNumberOfClasses( numberOfClasses  );


  ClassLabelVectorType classLabels;
  classLabels.resize( numberOfClasses );

  // Spread the labels over the intensity range 
  unsigned int labelInterval = 1;
  if( m_UseNonContiguousLabels )
    {
    labelInterval = ( NumericTraits<OutputPixelType>::max() / numberOfClasses ) - 1;
    }

  unsigned int label = 0;


#ifdef ITK_USE_REVIEW_STATISTICS
  MembershipFunctionVectorType membershipFunctions;
#endif

  for(unsigned int k=0; k<numberOfClasses; k++)
    {
    classLabels[k] = label;
    label += labelInterval;
    MembershipFunctionPointer membershipFunction = MembershipFunctionType::New();
    MembershipFunctionOriginType origin( adaptor->GetMeasurementVectorSize() );
    origin[0] = this->m_FinalMeans[k]; // A scalar image has a MeasurementVector of dimension 1
#ifdef ITK_USE_REVIEW_STATISTICS
    membershipFunction->SetCentroid( origin );
    const MembershipFunctionType *constMembershipFunction = membershipFunction;
    membershipFunctions.push_back( constMembershipFunction );
#else
    membershipFunction->SetOrigin( origin );
    classifier->AddMembershipFunction( membershipFunction.GetPointer() );
#endif
    }

#ifdef ITK_USE_REVIEW_STATISTICS
  typename ClassifierType::MembershipFunctionVectorObjectPointer membershipFunctionsObject =
    ClassifierType::MembershipFunctionVectorObjectType::New();
  membershipFunctionsObject->Set(membershipFunctions); 
  classifier->SetMembershipFunctions(membershipFunctionsObject);

  typedef typename ClassifierType::ClassLabelVectorObjectType ClassLabelVectorObjectType;
  typename ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New();
  classLabelsObject->Set(classLabels);
  classifier->SetClassLabels( classLabelsObject );
#else
  classifier->SetMembershipFunctionClassLabels( classLabels );
#endif

  // Execute the actual classification

  classifier->Update();

  // Now classify the pixels
  typename OutputImageType::Pointer outputPtr = this->GetOutput();

  typedef ImageRegionIterator< OutputImageType >  ImageIterator;

  outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
  outputPtr->Allocate();

  RegionType region = outputPtr->GetBufferedRegion();

  // If we constrained the classification to a region, label only pixels within
  // the region. Label outside pixels as numberOfClasses + 1
  if( m_ImageRegionDefined )
    {
    region = m_ImageRegion;
    }
        
  ImageIterator pixel( outputPtr, region );
  pixel.GoToBegin();

#ifdef ITK_USE_REVIEW_STATISTICS
  typedef typename ClassifierType::MembershipSampleType ClassifierOutputType;
#else
  typedef typename ClassifierType::OutputType  ClassifierOutputType;
#endif
      
  const ClassifierOutputType  * membershipSample = classifier->GetOutput();

  typedef typename ClassifierOutputType::ConstIterator LabelIterator;
    
  LabelIterator iter = membershipSample->Begin();
  LabelIterator end  = membershipSample->End();

  while ( iter != end )
    {
    pixel.Set( iter.GetClassLabel() );
    ++iter;
    ++pixel;
    }

  if( m_ImageRegionDefined )
    {
    // If a region is defined to constrain classification to, we need to label
    // pixels outside with numberOfClasses + 1. 
    typedef ImageRegionExclusionIteratorWithIndex< OutputImageType > 
      ExclusionImageIteratorType;
    ExclusionImageIteratorType exIt( outputPtr, outputPtr->GetBufferedRegion() );
    exIt.SetExclusionRegion( region );
    exIt.GoToBegin();
    if( m_UseNonContiguousLabels )
      {
      OutputPixelType outsideLabel = labelInterval * numberOfClasses;
      while( !exIt.IsAtEnd() )
        {
        exIt.Set( outsideLabel );
        ++exIt;
        }
      }
    else
      {
      while( !exIt.IsAtEnd() )
        {
        exIt.Set( numberOfClasses );
        ++exIt;
        }
      }
    }

}

/**
 * Add a new class for the classifier. This requires to explicitly set the
 * initial mean value for that class.
 */
template <class TInputImage, class TOutputImage >
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage >
::AddClassWithInitialMean( RealPixelType mean )
{
  this->m_InitialMeans.push_back( mean );
}


/**
 * Standard "PrintSelf" method
 */
template <class TInputImage, class TOutputImage >
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage >
::PrintSelf(
  std::ostream& os, 
  Indent indent) const
{
  Superclass::PrintSelf( os, indent );
  os << indent << "Final Means " << m_FinalMeans << std::endl;
  os << indent << "Use Contiguous Labels " << m_UseNonContiguousLabels << std::endl;
  os << indent << "Image Region Defined: " << m_ImageRegionDefined << std::endl;
  os << indent << "Image Region: " << m_ImageRegion << std::endl;
}

} // end namespace itk

#endif