File: itkCurvatureNDAnisotropicDiffusionFunction.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (170 lines) | stat: -rw-r--r-- 5,138 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkCurvatureNDAnisotropicDiffusionFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkCurvatureNDAnisotropicDiffusionFunction_txx
#define __itkCurvatureNDAnisotropicDiffusionFunction_txx

namespace itk {

template<class TImage>
double CurvatureNDAnisotropicDiffusionFunction<TImage>
::m_MIN_NORM = 1.0e-10;
 
template<class TImage>
CurvatureNDAnisotropicDiffusionFunction<TImage>
::CurvatureNDAnisotropicDiffusionFunction()
{
  unsigned int i, j;
  RadiusType r;

  for (i = 0; i < ImageDimension; ++i)
    {
    r[i] = 1;
    }
  this->SetRadius(r);

  // Dummy neighborhood used to set up the slices.
  Neighborhood<PixelType, ImageDimension> it;
  it.SetRadius(r);
  
  // Slice the neighborhood
  m_Center =  it.Size() / 2;

  for (i = 0; i< ImageDimension; ++i)
    {
    m_Stride[i] = it.GetStride(i);
    x_slice[i]  = std::slice( m_Center - m_Stride[i], 3, m_Stride[i]);
    }

  for (i = 0; i< ImageDimension; ++i)
    {
    for (j = 0; j < ImageDimension; ++j)
      {
      // For taking derivatives in the i direction that are offset one
      // pixel in the j direction.
      xa_slice[i][j]
        = std::slice((m_Center + m_Stride[j])-m_Stride[i], 3, m_Stride[i]); 
      xd_slice[i][j]
        = std::slice((m_Center - m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
      }
    }

  // Allocate the derivative operator.
  dx_op.SetDirection(0);  // Not relevant, will be applied in a slice-based
                          // fashion.

  dx_op.SetOrder(1);
  dx_op.CreateDirectional();

}

template<class TImage>
typename CurvatureNDAnisotropicDiffusionFunction<TImage>::PixelType
CurvatureNDAnisotropicDiffusionFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void *itkNotUsed(globalData),
                const FloatOffsetType& itkNotUsed(offset))
{
  unsigned int i, j;
  double speed, dx_forward_Cn, dx_backward_Cn, propagation_gradient;
  double grad_mag_sq, grad_mag_sq_d, grad_mag, grad_mag_d;
  double Cx, Cxd;
  double dx_forward[ImageDimension];
  double dx_backward[ImageDimension];
  double dx[ImageDimension];
  double dx_aug;
  double dx_dim;

  // Calculate the partial derivatives for each dimension
  for (i = 0; i < ImageDimension; i++)
    {
    // ``Half'' derivatives
    dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
      - it.GetPixel(m_Center);
    dx_forward[i] *= this->m_ScaleCoefficients[i];
    dx_backward[i] = it.GetPixel(m_Center)
      - it.GetPixel(m_Center - m_Stride[i]);
    dx_backward[i] *= this->m_ScaleCoefficients[i];

    // Centralized differences
    dx[i] = m_InnerProduct(x_slice[i], it, dx_op);
    dx[i] *= this->m_ScaleCoefficients[i];
    }

  speed = 0.0;
  for (i = 0; i < ImageDimension; i++)
    {
    // Gradient magnitude approximations
    grad_mag_sq   = dx_forward[i]  * dx_forward[i];
    grad_mag_sq_d = dx_backward[i] * dx_backward[i];
    for (j = 0; j < ImageDimension; j++)
      {
      if (j != i)
        {
        dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op);
        dx_aug *= this->m_ScaleCoefficients[j];
        dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op);
        dx_dim *= this->m_ScaleCoefficients[j];
        grad_mag_sq += 0.25f * (dx[j]+dx_aug) * (dx[j]+dx_aug);
        grad_mag_sq_d += 0.25f * (dx[j]+dx_dim) * (dx[j]+dx_dim);
        }
      }
    grad_mag = vcl_sqrt(m_MIN_NORM + grad_mag_sq);
    grad_mag_d = vcl_sqrt(m_MIN_NORM + grad_mag_sq_d);

    // Conductance Terms
    if (m_K == 0.0)
      {
      Cx = 0.0;
      Cxd = 0.0;
      }
    else
      {
      Cx  = vcl_exp( grad_mag_sq   / m_K );
      Cxd = vcl_exp( grad_mag_sq_d / m_K );
      }
    // First order normalized finite-difference conductance products
    dx_forward_Cn  = (dx_forward[i]  / grad_mag) * Cx;
    dx_backward_Cn = (dx_backward[i] / grad_mag_d) * Cxd; 
      
    // Second order conductance-modified curvature
    speed += (dx_forward_Cn - dx_backward_Cn);
    }
  // ``Upwind'' gradient magnitude term
  propagation_gradient = 0.0;
  if (speed > 0)
    {  
    for (i = 0; i < ImageDimension; i++)
      {
      propagation_gradient +=
        vnl_math_sqr( vnl_math_min(dx_backward[i], 0.0) )
        + vnl_math_sqr( vnl_math_max(dx_forward[i],  0.0) );
      }
    }
  else
    {
    for (i = 0; i < ImageDimension; i++)
      {
      propagation_gradient +=
        vnl_math_sqr( vnl_math_max(dx_backward[i], 0.0) )
        + vnl_math_sqr( vnl_math_min(dx_forward[i],  0.0) );
      }
    }
  return static_cast<PixelType>( vcl_sqrt(propagation_gradient) * speed );
}

} // end namespace itk

#endif