1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCurvatureNDAnisotropicDiffusionFunction.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCurvatureNDAnisotropicDiffusionFunction_txx
#define __itkCurvatureNDAnisotropicDiffusionFunction_txx
namespace itk {
template<class TImage>
double CurvatureNDAnisotropicDiffusionFunction<TImage>
::m_MIN_NORM = 1.0e-10;
template<class TImage>
CurvatureNDAnisotropicDiffusionFunction<TImage>
::CurvatureNDAnisotropicDiffusionFunction()
{
unsigned int i, j;
RadiusType r;
for (i = 0; i < ImageDimension; ++i)
{
r[i] = 1;
}
this->SetRadius(r);
// Dummy neighborhood used to set up the slices.
Neighborhood<PixelType, ImageDimension> it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for (i = 0; i< ImageDimension; ++i)
{
m_Stride[i] = it.GetStride(i);
x_slice[i] = std::slice( m_Center - m_Stride[i], 3, m_Stride[i]);
}
for (i = 0; i< ImageDimension; ++i)
{
for (j = 0; j < ImageDimension; ++j)
{
// For taking derivatives in the i direction that are offset one
// pixel in the j direction.
xa_slice[i][j]
= std::slice((m_Center + m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
xd_slice[i][j]
= std::slice((m_Center - m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
}
}
// Allocate the derivative operator.
dx_op.SetDirection(0); // Not relevant, will be applied in a slice-based
// fashion.
dx_op.SetOrder(1);
dx_op.CreateDirectional();
}
template<class TImage>
typename CurvatureNDAnisotropicDiffusionFunction<TImage>::PixelType
CurvatureNDAnisotropicDiffusionFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void *itkNotUsed(globalData),
const FloatOffsetType& itkNotUsed(offset))
{
unsigned int i, j;
double speed, dx_forward_Cn, dx_backward_Cn, propagation_gradient;
double grad_mag_sq, grad_mag_sq_d, grad_mag, grad_mag_d;
double Cx, Cxd;
double dx_forward[ImageDimension];
double dx_backward[ImageDimension];
double dx[ImageDimension];
double dx_aug;
double dx_dim;
// Calculate the partial derivatives for each dimension
for (i = 0; i < ImageDimension; i++)
{
// ``Half'' derivatives
dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
- it.GetPixel(m_Center);
dx_forward[i] *= this->m_ScaleCoefficients[i];
dx_backward[i] = it.GetPixel(m_Center)
- it.GetPixel(m_Center - m_Stride[i]);
dx_backward[i] *= this->m_ScaleCoefficients[i];
// Centralized differences
dx[i] = m_InnerProduct(x_slice[i], it, dx_op);
dx[i] *= this->m_ScaleCoefficients[i];
}
speed = 0.0;
for (i = 0; i < ImageDimension; i++)
{
// Gradient magnitude approximations
grad_mag_sq = dx_forward[i] * dx_forward[i];
grad_mag_sq_d = dx_backward[i] * dx_backward[i];
for (j = 0; j < ImageDimension; j++)
{
if (j != i)
{
dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op);
dx_aug *= this->m_ScaleCoefficients[j];
dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op);
dx_dim *= this->m_ScaleCoefficients[j];
grad_mag_sq += 0.25f * (dx[j]+dx_aug) * (dx[j]+dx_aug);
grad_mag_sq_d += 0.25f * (dx[j]+dx_dim) * (dx[j]+dx_dim);
}
}
grad_mag = vcl_sqrt(m_MIN_NORM + grad_mag_sq);
grad_mag_d = vcl_sqrt(m_MIN_NORM + grad_mag_sq_d);
// Conductance Terms
if (m_K == 0.0)
{
Cx = 0.0;
Cxd = 0.0;
}
else
{
Cx = vcl_exp( grad_mag_sq / m_K );
Cxd = vcl_exp( grad_mag_sq_d / m_K );
}
// First order normalized finite-difference conductance products
dx_forward_Cn = (dx_forward[i] / grad_mag) * Cx;
dx_backward_Cn = (dx_backward[i] / grad_mag_d) * Cxd;
// Second order conductance-modified curvature
speed += (dx_forward_Cn - dx_backward_Cn);
}
// ``Upwind'' gradient magnitude term
propagation_gradient = 0.0;
if (speed > 0)
{
for (i = 0; i < ImageDimension; i++)
{
propagation_gradient +=
vnl_math_sqr( vnl_math_min(dx_backward[i], 0.0) )
+ vnl_math_sqr( vnl_math_max(dx_forward[i], 0.0) );
}
}
else
{
for (i = 0; i < ImageDimension; i++)
{
propagation_gradient +=
vnl_math_sqr( vnl_math_max(dx_backward[i], 0.0) )
+ vnl_math_sqr( vnl_math_min(dx_forward[i], 0.0) );
}
}
return static_cast<PixelType>( vcl_sqrt(propagation_gradient) * speed );
}
} // end namespace itk
#endif
|