| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 
 | /*=========================================================================
Program:   Insight Segmentation & Registration Toolkit
Module:    itkDiscreteGaussianImageFilter.txx
Language:  C++
Date:      $Date$
Version:   $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkDiscreteGaussianImageFilter_txx
#define __itkDiscreteGaussianImageFilter_txx
#include "itkDiscreteGaussianImageFilter.h"
#include "itkNeighborhoodOperatorImageFilter.h"
#include "itkGaussianOperator.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"
#include "itkStreamingImageFilter.h"
namespace itk
{
template <class TInputImage, class TOutputImage>
void 
DiscreteGaussianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();
  
  // get pointers to the input and output
  typename Superclass::InputImagePointer  inputPtr = 
    const_cast< TInputImage *>( this->GetInput() );
  
  if ( !inputPtr )
    {
    return;
    }
  // Build an operator so that we can determine the kernel size
  GaussianOperator<OutputPixelType, ImageDimension> oper;
  typename TInputImage::SizeType radius;
  
  for (unsigned int i = 0; i < TInputImage::ImageDimension; i++)
    {
    // Determine the size of the operator in this dimension.  Note that the
    // Gaussian is built as a 1D operator in each of the specified directions.
    oper.SetDirection(i);
    if (m_UseImageSpacing == true)
      {
      if (this->GetInput()->GetSpacing()[i] == 0.0)
        {
        itkExceptionMacro(<< "Pixel spacing cannot be zero");
        }
      else
        {
        // convert the variance from physical units to pixels
        double s = this->GetInput()->GetSpacing()[i];
        s = s*s;
        oper.SetVariance(m_Variance[i] / s);
        }
      }
    else
      {
      oper.SetVariance(m_Variance[i]);
      }
    oper.SetMaximumError(m_MaximumError[i]);
    oper.SetMaximumKernelWidth(m_MaximumKernelWidth);
    oper.CreateDirectional();
    
    radius[i] = oper.GetRadius(i);
    }
  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();
  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius( radius );
  // crop the input requested region at the input's largest possible region
  if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
    {
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    return;
    }
  else
    {
    // Couldn't crop the region (requested region is outside the largest
    // possible region).  Throw an exception.
    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    
    // build an exception
    InvalidRequestedRegionError e(__FILE__, __LINE__);
    e.SetLocation(ITK_LOCATION);
    e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
    e.SetDataObject(inputPtr);
    throw e;
    }
}
template< class TInputImage, class TOutputImage >
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
  typename TOutputImage::Pointer output = this->GetOutput();
  
  output->SetBufferedRegion(output->GetRequestedRegion());
  output->Allocate();
  // Create an internal image to protect the input image's metdata
  // (e.g. RequestedRegion). The StreamingImageFilter changes the
  // requested region as part of its normal processing.
  typename TInputImage::Pointer localInput = TInputImage::New();
  localInput->Graft(this->GetInput());
  // Determine the dimensionality to filter
  unsigned int filterDimensionality = m_FilterDimensionality;
  if (filterDimensionality > ImageDimension)
    {
    filterDimensionality = ImageDimension;
    }
  if (filterDimensionality == 0)
    {
    // no smoothing, copy input to output
    ImageRegionConstIterator<InputImageType> inIt(
      localInput,
      this->GetOutput()->GetRequestedRegion() );
    ImageRegionIterator<OutputImageType> outIt(
      output,
      this->GetOutput()->GetRequestedRegion() );
    while (!inIt.IsAtEnd())
      {
      outIt.Set( static_cast<OutputPixelType>(inIt.Get()) );
      ++inIt;
      ++outIt;
      }
    return;
    }
  
  // Type of the pixel to use for intermediate results
  typedef typename NumericTraits<OutputPixelType>::RealType RealOutputPixelType;
  typedef Image<OutputPixelType, ImageDimension>            RealOutputImageType;
  
  // Type definition for the internal neighborhood filter
  //
  // First filter convolves and changes type from input type to real type
  // Middle filters convolves from real to real
  // Last filter convolves and changes type from real type to output type
  // Streaming filter forces the mini-pipeline to run in chunks
  typedef NeighborhoodOperatorImageFilter<InputImageType,
    RealOutputImageType, RealOutputPixelType> FirstFilterType;
  typedef NeighborhoodOperatorImageFilter<RealOutputImageType,
    RealOutputImageType, RealOutputPixelType> IntermediateFilterType;
  typedef NeighborhoodOperatorImageFilter<RealOutputImageType,
    OutputImageType, RealOutputPixelType> LastFilterType;
  typedef NeighborhoodOperatorImageFilter<InputImageType,
    OutputImageType, RealOutputPixelType> SingleFilterType;
  typedef StreamingImageFilter<OutputImageType, OutputImageType>
    StreamingFilterType;
  
  typedef typename FirstFilterType::Pointer        FirstFilterPointer;
  typedef typename IntermediateFilterType::Pointer IntermediateFilterPointer;
  typedef typename LastFilterType::Pointer         LastFilterPointer;
  typedef typename SingleFilterType::Pointer       SingleFilterPointer;
  typedef typename StreamingFilterType::Pointer    StreamingFilterPointer;
  // Create a series of operators
  typedef GaussianOperator<RealOutputPixelType, ImageDimension> OperatorType;
  std::vector<OperatorType> oper;
  oper.resize(filterDimensionality);
  // Create a process accumulator for tracking the progress of minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);
  // Set up the operators
  unsigned int i;
  for (i = 0; i < filterDimensionality; ++i)
    {
    // we reverse the direction to minimize computation while, because
    // the largest dimension will be split slice wise for streaming 
    unsigned int reverse_i = filterDimensionality - i - 1;
    // Set up the operator for this dimension
    oper[reverse_i].SetDirection(i);
    if (m_UseImageSpacing == true)
      {
      if (localInput->GetSpacing()[i] == 0.0)
        {
        itkExceptionMacro(<< "Pixel spacing cannot be zero");
        }
      else
        {
        // convert the variance from physical units to pixels
        double s = localInput->GetSpacing()[i];
        s = s*s;
        oper[reverse_i].SetVariance(m_Variance[i] / s);
        }
      }
    else
      {
      oper[reverse_i].SetVariance(m_Variance[i]);
      }
    oper[reverse_i].SetMaximumKernelWidth(m_MaximumKernelWidth);
    oper[reverse_i].SetMaximumError(m_MaximumError[i]);
    oper[reverse_i].CreateDirectional();
    }
  // Create a chain of filters
  //
  //
  if (filterDimensionality == 1)
    {
    // Use just a single filter
    SingleFilterPointer singleFilter = SingleFilterType::New();
    singleFilter->SetOperator(oper[0]);
    singleFilter->SetInput( localInput );
    progress->RegisterInternalFilter(singleFilter,1.0f/m_FilterDimensionality);
    // Graft this filters output onto the mini-pipeline so the mini-pipeline
    // has the correct region ivars and will write to this filters bulk data
    // output.
    singleFilter->GraftOutput( output );
    
    // Update the filter 
    singleFilter->Update();
    
    // Graft the last output of the mini-pipeline onto this filters output so
    // the final output has the correct region ivars and a handle to the final
    // bulk data
    this->GraftOutput(output);
    }
  else
    {
    // Setup a full mini-pipeline and stream the data through the
    // pipeline.
    unsigned int numberOfStages = filterDimensionality*this->GetInternalNumberOfStreamDivisions() + 1;
    
    // First filter convolves and changes type from input type to real type
    FirstFilterPointer firstFilter = FirstFilterType::New();
    firstFilter->SetOperator(oper[0]);
    firstFilter->ReleaseDataFlagOn();
    firstFilter->SetInput( localInput );
    progress->RegisterInternalFilter(firstFilter,1.0f/numberOfStages);
    
    // Middle filters convolves from real to real 
    std::vector<IntermediateFilterPointer> intermediateFilters;
    if (filterDimensionality > 2)
      {
      for (i=1; i < filterDimensionality-1; ++i)
        {
        IntermediateFilterPointer f = IntermediateFilterType::New();
        f->SetOperator(oper[i]);
        f->ReleaseDataFlagOn();
        progress->RegisterInternalFilter(f,1.0f / numberOfStages);
        
        if (i==1)
          {
          f->SetInput(firstFilter->GetOutput());
          }
        else
          {
          // note: first filter in vector (zeroth element) is for i==1
          f->SetInput(intermediateFilters[i-2]->GetOutput());
          }
        
        intermediateFilters.push_back( f );
        }
      }
    
    // Last filter convolves and changes type from real type to output type
    LastFilterPointer lastFilter = LastFilterType::New();
    lastFilter->SetOperator(oper[filterDimensionality-1]);
    lastFilter->ReleaseDataFlagOn();
    if (filterDimensionality > 2)
      {
      lastFilter->SetInput( intermediateFilters[filterDimensionality-3]->GetOutput() );
      }
    else
      {
      lastFilter->SetInput( firstFilter->GetOutput() );
      }
    progress->RegisterInternalFilter(lastFilter,1.0f / numberOfStages);
    
    // Put in a StreamingImageFilter so the mini-pipeline is processed
    // in chunks to minimize memory usage
    StreamingFilterPointer streamingFilter = StreamingFilterType::New();
    streamingFilter->SetInput( lastFilter->GetOutput() );
    streamingFilter->SetNumberOfStreamDivisions( this->GetInternalNumberOfStreamDivisions()  );
    progress->RegisterInternalFilter(streamingFilter,1.0f / numberOfStages);
    
    // Graft this filters output onto the mini-pipeline so the mini-pipeline
    // has the correct region ivars and will write to this filters bulk data
    // output.
    streamingFilter->GraftOutput( output );
    
    // Update the last filter in the chain
    streamingFilter->Update();
    
    // Graft the last output of the mini-pipeline onto this filters output so
    // the final output has the correct region ivars and a handle to the final
    // bulk data
    this->GraftOutput(output);
    }
}
template< class TInputImage, class TOutputImage >
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  os << indent << "Variance: " << m_Variance << std::endl;
  os << indent << "MaximumError: " << m_MaximumError << std::endl;
  os << indent << "MaximumKernelWidth: " << m_MaximumKernelWidth << std::endl;
  os << indent << "FilterDimensionality: " << m_FilterDimensionality << std::endl;
  os << indent << "UseImageSpacing: " << m_UseImageSpacing << std::endl;
  os << indent << "InternalNumberOfStreamDivisions: " << m_InternalNumberOfStreamDivisions << std::endl;
}
} // end namespace itk
#endif
 |