1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGradientRecursiveGaussianImageFilter.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGradientRecursiveGaussianImageFilter_h
#define __itkGradientRecursiveGaussianImageFilter_h
#include "itkRecursiveGaussianImageFilter.h"
#include "itkNthElementImageAdaptor.h"
#include "itkImage.h"
#include "itkCovariantVector.h"
#include "itkPixelTraits.h"
#include "itkProgressAccumulator.h"
#include <vector>
namespace itk
{
/** \class GradientRecursiveGaussianImageFilter
* \brief Computes the gradient of an image by convolution
* with the first derivative of a Gaussian.
*
* This filter is implemented using the recursive gaussian
* filters
*
*
* \ingroup GradientFilters
* \ingroup Singlethreaded
*/
// NOTE that the ITK_TYPENAME macro has to be used here in lieu
// of "typename" because VC++ doesn't like the typename keyword
// on the defaults of template parameters
template <typename TInputImage,
typename TOutputImage= Image< CovariantVector<
ITK_TYPENAME NumericTraits< ITK_TYPENAME TInputImage::PixelType>::RealType,
::itk::GetImageDimension<TInputImage>::ImageDimension >,
::itk::GetImageDimension<TInputImage>::ImageDimension > >
class ITK_EXPORT GradientRecursiveGaussianImageFilter:
public ImageToImageFilter<TInputImage,TOutputImage>
{
public:
/** Standard class typedefs. */
typedef GradientRecursiveGaussianImageFilter Self;
typedef ImageToImageFilter<TInputImage,TOutputImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Pixel Type of the input image */
typedef TInputImage InputImageType;
typedef typename TInputImage::PixelType PixelType;
typedef typename NumericTraits<PixelType>::RealType RealType;
/** Image dimension. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
/** Define the image type for internal computations
RealType is usually 'double' in NumericTraits.
Here we prefer float in order to save memory. */
typedef float InternalRealType;
typedef Image<InternalRealType,
itkGetStaticConstMacro(ImageDimension) > RealImageType;
/** Output Image Nth Element Adaptor
* This adaptor allows to use conventional scalar
* smoothing filters to compute each one of the
* components of the gradient image pixels. */
typedef NthElementImageAdaptor< TOutputImage,
InternalRealType > OutputImageAdaptorType;
typedef typename OutputImageAdaptorType::Pointer OutputImageAdaptorPointer;
/** Smoothing filter type */
typedef RecursiveGaussianImageFilter<
RealImageType,
RealImageType
> GaussianFilterType;
/** Derivative filter type, it will be the first in the pipeline */
typedef RecursiveGaussianImageFilter<
InputImageType,
RealImageType
> DerivativeFilterType;
/** Pointer to a gaussian filter. */
typedef typename GaussianFilterType::Pointer GaussianFilterPointer;
/** Pointer to a derivative filter. */
typedef typename DerivativeFilterType::Pointer DerivativeFilterPointer;
/** Pointer to the Output Image */
typedef typename TOutputImage::Pointer OutputImagePointer;
/** Type of the output Image */
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::PixelType OutputPixelType;
typedef typename PixelTraits<OutputPixelType>::ValueType OutputComponentType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Runtime information support. */
itkTypeMacro(GradientRecursiveGaussianImageFilter,
ImageToImageFilter);
/** Set Sigma value. Sigma is measured in the units of image spacing. */
void SetSigma( RealType sigma );
/** Define which normalization factor will be used for the Gaussian */
void SetNormalizeAcrossScale( bool normalizeInScaleSpace );
itkGetConstMacro( NormalizeAcrossScale, bool );
/** GradientRecursiveGaussianImageFilter needs all of the input to produce an
* output. Therefore, GradientRecursiveGaussianImageFilter needs to provide
* an implementation for GenerateInputRequestedRegion in order to inform
* the pipeline execution model.
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
virtual void GenerateInputRequestedRegion() throw(InvalidRequestedRegionError);
/** The UseImageDirection flag determines whether the gradients are
* computed with respect to the image grid or with respect to the physical
* space. When this flag is ON the gradients are computed with respect to
* the coodinate system of physical space. The difference is whether we take
* into account the image Direction or not. The flag ON will take into
* account the image direction and will result in an extra matrix
* multiplication compared to the amount of computation performed when the
* flag is OFF.
* The default value of this flag is the same as the CMAKE option
* ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE (i.e ON by default when ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE is ON,
* and OFF by default when ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE is
* OFF). */
itkSetMacro( UseImageDirection, bool );
itkGetConstMacro( UseImageDirection, bool );
itkBooleanMacro( UseImageDirection );
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(InputHasNumericTraitsCheck,
(Concept::HasNumericTraits<PixelType>));
itkConceptMacro(OutputHasPixelTraitsCheck,
(Concept::HasPixelTraits<OutputPixelType>));
/** End concept checking */
#endif
protected:
GradientRecursiveGaussianImageFilter();
virtual ~GradientRecursiveGaussianImageFilter() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/** Generate Data */
void GenerateData( void );
// Override since the filter produces the entire dataset
void EnlargeOutputRequestedRegion(DataObject *output);
private:
GradientRecursiveGaussianImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
std::vector<GaussianFilterPointer> m_SmoothingFilters;
DerivativeFilterPointer m_DerivativeFilter;
OutputImageAdaptorPointer m_ImageAdaptor;
/** Normalize the image across scale space */
bool m_NormalizeAcrossScale;
/** Take into account image orientation when computing the Gradient */
bool m_UseImageDirection;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGradientRecursiveGaussianImageFilter.txx"
#endif
#endif
|