File: itkGrayscaleGeodesicDilateImageFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (431 lines) | stat: -rw-r--r-- 14,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGrayscaleGeodesicDilateImageFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGrayscaleGeodesicDilateImageFilter_txx
#define __itkGrayscaleGeodesicDilateImageFilter_txx

#include <limits.h>

#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkNumericTraits.h"
#include "itkGrayscaleGeodesicDilateImageFilter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkProgressAccumulator.h"
#include "itkProgressReporter.h"
#include "itkIterationReporter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkConstShapedNeighborhoodIterator.h"
#include "vnl/vnl_math.h"

namespace itk {

template <class TInputImage, class TOutputImage>
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::GrayscaleGeodesicDilateImageFilter()
{
  m_RunOneIteration = false;  // run to convergence
  m_NumberOfIterationsUsed = 0;
  this->SetNumberOfRequiredInputs(2);
  m_FullyConnected = false;
}


template <class TInputImage, class TOutputImage>
void 
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::SetMarkerImage(const MarkerImageType* markerImage)
{
  // Process object is not const-correct so the const casting is required.
  this->SetNthInput(0, const_cast<MarkerImageType *>( markerImage ));
}


template <class TInputImage, class TOutputImage>
const typename GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>::MarkerImageType *
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::GetMarkerImage()
{
  return this->GetInput(0);
}


template <class TInputImage, class TOutputImage>
void 
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::SetMaskImage(const MaskImageType* maskImage)
{
  // Process object is not const-correct so the const casting is required.
  this->SetNthInput(1, const_cast<MaskImageType *>( maskImage ));
}


template <class TInputImage, class TOutputImage>
const typename GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>::MaskImageType *
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::GetMaskImage()
{
  return this->GetInput(1);
}


template <class TInputImage, class TOutputImage>
void 
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // get pointers to the inputs
  MarkerImagePointer  markerPtr =
    const_cast< MarkerImageType * >( this->GetInput(0) );

  MaskImagePointer  maskPtr = 
    const_cast< MaskImageType * >( this->GetInput(1) );
  
  if ( !markerPtr || !maskPtr )
    {
    return;
    }

  // If configured to run one iteration, the marker image must be
  // padded by one pixel while the mask image can match the size of
  // the output.  If configured to run until convergence, the entire
  // marker and mask image will be required.
  //
  if (m_RunOneIteration)
    {
    // by calling the superclass' implementation above, the mask image
    // is already configured to have its requested input match the
    // output requested region. so nothing needs to be done for the
    // mask image.

    // the marker image needs to be padded by one pixel and cropped to
    // the LargestPossibleRegion.
    //
    
    // get a copy of the marker image requested region (should equal
    // the output requested region)
    MarkerImageRegionType markerRequestedRegion;
    markerRequestedRegion = markerPtr->GetRequestedRegion();

    // pad the marker requested region by the elementary operator radius
    markerRequestedRegion.PadByRadius( 1 );

    // crop the marker requested region at the marker's largest possible region
    if ( markerRequestedRegion.Crop(markerPtr->GetLargestPossibleRegion()) )
      {
      markerPtr->SetRequestedRegion( markerRequestedRegion );
      return;
      }
    else
      {
      // Couldn't crop the region (requested region is outside the largest
      // possible region).  Throw an exception.
      
      // store what we tried to request (prior to trying to crop)
      markerPtr->SetRequestedRegion( markerRequestedRegion );
    
      // build an exception
      InvalidRequestedRegionError e(__FILE__, __LINE__);
      e.SetLocation(ITK_LOCATION);
      e.SetDescription("Requested region for the marker image is (at least partially) outside the largest possible region.");
      e.SetDataObject(markerPtr);
      throw e;
      }
    }
  else
    {
    // The filter was configured to run to convergence.  We need to
    // configure the inputs such that all the data is available.
    //
    markerPtr->SetRequestedRegion(markerPtr->GetLargestPossibleRegion());
    maskPtr->SetRequestedRegion(maskPtr->GetLargestPossibleRegion());
    }
}


template <class TInputImage, class TOutputImage>
void 
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
  // if running to convergence, then all the output will be produced
  if ( !m_RunOneIteration)
    {
    this->GetOutput()
      ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
    }
}


template<class TInputImage, class TOutputImage>
void
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
  IterationReporter iterate(this, 0, 1);

  // If the filter is configured to run a single iteration, then
  // delegate to the superclass' version of GenerateData. This will
  // engage the multithreaded version of the GenerateData.
  //
  if (m_RunOneIteration)
    {
    Superclass::GenerateData();
    m_NumberOfIterationsUsed = 1;
    iterate.CompletedStep();
    return;
    }


  // Filter was configured to run until convergence. We need to
  // delegate to an instance of the filter to run each iteration
  // separately. For efficiency, we will delegate to an instance that
  // is templated over <TInputImage, TInputImage> to avoid any
  // pixelwise casting until the final output image is configured.
  typename GrayscaleGeodesicDilateImageFilter<TInputImage, TInputImage>::Pointer
    singleIteration
    = GrayscaleGeodesicDilateImageFilter<TInputImage, TInputImage>::New();
  bool done = false;

  // set up the singleIteration filter. we are not using the grafting
  // mechanism because we only need the requested region to be set up
  singleIteration->RunOneIterationOn();
  singleIteration->SetMarkerImage( this->GetMarkerImage() );
  singleIteration->SetMaskImage( this->GetMaskImage() );
  singleIteration->GetOutput()
    ->SetRequestedRegion( this->GetOutput()->GetRequestedRegion() );
  
  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);
  progress->RegisterInternalFilter(singleIteration,1.0f);

  // run until convergence
  while (!done)
    {
    // run one iteration
    singleIteration->Update();
    iterate.CompletedStep();

    // Check for convergence.  Compare the output of the single
    // iteration of the algorithm with the current marker image.
    ImageRegionConstIterator<TInputImage> singleInIt(
      singleIteration->GetMarkerImage(),
      singleIteration->GetOutput()->GetRequestedRegion() );
    ImageRegionIterator<TInputImage> singleOutIt(
      singleIteration->GetOutput(),
      singleIteration->GetOutput()->GetRequestedRegion() );

    done = true;
    while ( !singleOutIt.IsAtEnd() )
      {
      // exit early from check on first pixel that is different
      if (singleInIt.Get() != singleOutIt.Get())
        {
        done = false;
        break;        // exit early from check
        }
      ++singleInIt;
      ++singleOutIt;
      }

    // If we have not converged, then setup the singleIteration filter
    // for the next iteration.
    //
    if (!done)
      {
      // disconnect the current output from the singleIteration object
      MarkerImagePointer marker = singleIteration->GetOutput();
      marker->DisconnectPipeline();
      // assign the old output as the input
      singleIteration->SetMarkerImage( marker ); 
      // since DisconnectPipeline() creates a new output object, we need
      // to regraft the information onto the output
      singleIteration->GetOutput()
        ->SetRequestedRegion( this->GetOutput()->GetRequestedRegion() );

      // Keep track of how many iterations have be done
      m_NumberOfIterationsUsed++;
      }
    }

  // Convert the output of singleIteration to an TOutputImage type
  // (could use a CastImageFilter here to thread the copy)
  typename OutputImageType::Pointer outputPtr = this->GetOutput();
  outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
  outputPtr->Allocate();

  // walk the output of the singleIteration
  ImageRegionIterator<TInputImage> singleIt(singleIteration->GetOutput(),
                                            outputPtr->GetRequestedRegion() );
  // walk the real output of the filter
  ImageRegionIterator<TOutputImage> outIt(outputPtr,
                                          outputPtr->GetRequestedRegion());

  // cast and copy
  while( !outIt.IsAtEnd() )
    {
    outIt.Set( static_cast<OutputImagePixelType>( singleIt.Get() ) );
    ++outIt;
    ++singleIt;
    }
}

template<class TInputImage, class TOutputImage>
void
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread,
                       int threadId) 
{
  // Set up the progress reporter
  ProgressReporter progress(this, threadId,
                            outputRegionForThread.GetNumberOfPixels(),
                            10);
  
  // Set up the boundary condition to have no upwind derivatives
  ZeroFluxNeumannBoundaryCondition<TInputImage> BC;

  // Neighborhood iterator.  Let's use a shaped neighborhood so we can
  // restrict the access to face connected neighbors. This iterator
  // will be applied to the marker image.
  typedef ConstShapedNeighborhoodIterator<TInputImage> NeighborhoodIteratorType;

  // iterator for the marker image
  // NeighborhoodIteratorType markerIt;

  // iterator for the mask image
  ImageRegionConstIterator<TInputImage> maskIt; 

  // output iterator
  ImageRegionIterator<TOutputImage> oIt;
 
  
  // Find the boundary "faces". Structuring element is elementary
  // (face connected neighbors within a radius of 1).
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<MarkerImageType>::FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<MarkerImageType> fC;
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<MarkerImageType>::RadiusType kernelRadius;
  kernelRadius.Fill(1);
  faceList = fC(this->GetMarkerImage(), outputRegionForThread, kernelRadius);

  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<MarkerImageType>::FaceListType::iterator fit;

  unsigned int d;
  typename NeighborhoodIteratorType::OffsetValueType i;
  typename NeighborhoodIteratorType::OffsetType offset;

  MarkerImagePixelType value, dilateValue, maskValue;

  // Iterate over the faces
  //
  for (fit = faceList.begin(); fit != faceList.end(); ++fit)
    { 
    NeighborhoodIteratorType markerIt(kernelRadius,
                                      this->GetMarkerImage(), *fit);
    maskIt=ImageRegionConstIterator<MaskImageType>(this->GetMaskImage(), *fit);
    oIt = ImageRegionIterator<OutputImageType>(this->GetOutput(), *fit);

    markerIt.OverrideBoundaryCondition(&BC);
    markerIt.GoToBegin();

    if ( !m_FullyConnected )
      {
      // setup the marker iterator to only visit face connected
      // neighbors and the center pixel
      offset.Fill(0);
      markerIt.ActivateOffset(offset); // center pixel
      for (d=0; d < TInputImage::ImageDimension; ++d)
        {
        for (i=-1; i<=1; i+=2)
          {
          offset[d] = i;
          markerIt.ActivateOffset(offset); // a neighbor pixel in dimension d
          }
        offset[d] = 0;
        }
      }
    else
      {
      // activate all pixels excepted center pixel
      for (d=0; d < markerIt.GetCenterNeighborhoodIndex()*2+1; ++d)
        {
          markerIt.ActivateOffset(markerIt.GetOffset(d));
        }
      offset.Fill(0);
      markerIt.DeactivateOffset(offset);
      }

    // iterate over image region
    while ( ! oIt.IsAtEnd() )
      {
      dilateValue = NumericTraits<MarkerImagePixelType>::NonpositiveMin();
      
      // Dilate by checking the face connected neighbors (and center pixel)
      typename NeighborhoodIteratorType::ConstIterator sIt;
      for (sIt = markerIt.Begin(); !sIt.IsAtEnd(); sIt++)
        {
        // a pixel in the neighborhood
        value = sIt.Get();

        // dilation is a max operation
        if (value > dilateValue)
          {
          dilateValue = value;
          }
        }
      
      // Mask operation.  For geodesic dilation, the mask operation is
      // a pixelwise min operator with the elementary dilated image and
      // the mask image
      maskValue = maskIt.Get();

      if (maskValue < dilateValue)
        {
        dilateValue = maskValue;
        }

      // set the output pixel value
      oIt.Set( static_cast<OutputImagePixelType>( dilateValue ) );

      // move to next pixel
      ++oIt;
      ++markerIt;
      ++maskIt;

      progress.CompletedPixel();
      }
    }
}

template<class TInputImage, class TOutputImage>
void
GrayscaleGeodesicDilateImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Run one iteration: " << (m_RunOneIteration ? "on" : "off")
     << std::endl;
  os << indent << "Number of iterations used to produce current output: "
     << m_NumberOfIterationsUsed << std::endl;
  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
}
  
}// end namespace itk
#endif