1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkLaplacianImageFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkLaplacianImageFilter_txx
#define __itkLaplacianImageFilter_txx
#include "itkLaplacianImageFilter.h"
#include "itkNeighborhoodOperatorImageFilter.h"
#include "itkLaplacianOperator.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkProgressAccumulator.h"
namespace itk
{
template< class TInputImage, class TOutputImage >
void
LaplacianImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "UseImageSpacing = " << m_UseImageSpacing << std::endl;
}
template <class TInputImage, class TOutputImage>
void
LaplacianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw (InvalidRequestedRegionError)
{
// call the superclass' implementation of this method. this should
// copy the output requested region to the input requested region
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
InputImagePointer inputPtr =
const_cast< TInputImage * > ( this->GetInput() );
if ( !inputPtr )
{
return;
}
// Build an operator so that we can determine the kernel size
LaplacianOperator<OutputPixelType, ImageDimension> oper;
oper.CreateOperator();
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius( oper.GetRadius() );
// crop the input requested region at the input's largest possible region
if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
{
inputPtr->SetRequestedRegion( inputRequestedRegion );
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion( inputRequestedRegion );
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
e.SetLocation(ITK_LOCATION);
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template< class TInputImage, class TOutputImage >
void
LaplacianImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
double s[ImageDimension];
typename TOutputImage::Pointer output = this->GetOutput();
output->SetBufferedRegion(output->GetRequestedRegion());
output->Allocate();
ZeroFluxNeumannBoundaryCondition<TOutputImage> nbc;
// Create the Laplacian operator
LaplacianOperator<OutputPixelType, ImageDimension> oper;
for (unsigned i = 0; i < ImageDimension; i++)
{
if (this->GetInput()->GetSpacing()[i] == 0.0 )
{
itkExceptionMacro( << "Image spacing cannot be zero" );
}
else
{
s[i] = 1.0 / this->GetInput()->GetSpacing()[i];
}
}
oper.SetDerivativeScalings( s );
oper.CreateOperator();
typedef NeighborhoodOperatorImageFilter<InputImageType, OutputImageType> NOIF;
typename NOIF::Pointer filter = NOIF::New();
filter->OverrideBoundaryCondition(&nbc);
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// Register the filter with the with progress accumulator using
// equal weight proportion
progress->RegisterInternalFilter(filter,1.0f);
//
// set up the mini-pipline
//
filter->SetOperator(oper);
filter->SetInput(this->GetInput());
// graft this filter's output to the mini-pipeline. this sets up
// the mini-pipeline to write to this filter's output and copies
// region ivars and meta-data
filter->GraftOutput(output);
// execute the mini-pipeline
filter->Update();
// graft the output of the mini-pipeline back onto the filter's output.
// this copies back the region ivars and meta-dataig
this->GraftOutput(filter->GetOutput());
}
} // end namespace itk
#endif
|