File: itkSmoothingRecursiveGaussianImageFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (263 lines) | stat: -rw-r--r-- 7,772 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkSmoothingRecursiveGaussianImageFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSmoothingRecursiveGaussianImageFilter_txx
#define __itkSmoothingRecursiveGaussianImageFilter_txx

#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"

namespace itk
{


/**
 * Constructor
 */
template <typename TInputImage, typename TOutputImage >
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SmoothingRecursiveGaussianImageFilter()
{

  m_NormalizeAcrossScale = false;

  m_FirstSmoothingFilter = FirstGaussianFilterType::New();
  m_FirstSmoothingFilter->SetOrder( FirstGaussianFilterType::ZeroOrder );
  m_FirstSmoothingFilter->SetDirection( 0 );
  m_FirstSmoothingFilter->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
  m_FirstSmoothingFilter->ReleaseDataFlagOn();

  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ] = InternalGaussianFilterType::New();
    m_SmoothingFilters[ i ]->SetOrder( InternalGaussianFilterType::ZeroOrder );
    m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( m_NormalizeAcrossScale );
    m_SmoothingFilters[ i ]->SetDirection( i+1 );
    m_SmoothingFilters[ i ]->ReleaseDataFlagOn();
    }


  m_SmoothingFilters[0]->SetInput( m_FirstSmoothingFilter->GetOutput() );
  for( unsigned int i = 1; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ]->SetInput( 
      m_SmoothingFilters[i-1]->GetOutput() );
    }
  
  m_CastingFilter = CastingFilterType::New();
  m_CastingFilter->SetInput(m_SmoothingFilters[ImageDimension-2]->GetOutput());

  //
  // NB: We must call SetSigma in order to initialize the smoothing
  // filters with the default scale.  However, m_Sigma must first be
  // initialized (it is used inside SetSigma) and it must be different
  // from 1.0 or the call will be ignored.
  this->m_Sigma.Fill(0.0);
  this->SetSigma( 1.0 );
}


template <typename TInputImage, typename TOutputImage>
void 
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetNumberOfThreads( int nb )
{
  Superclass::SetNumberOfThreads( nb );
  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ]->SetNumberOfThreads( nb );
    }
  m_FirstSmoothingFilter->SetNumberOfThreads( nb );

}


// Set value of Sigma (isotropic)

template <typename TInputImage, typename TOutputImage>
void 
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetSigma( ScalarRealType sigma )
{
  SigmaArrayType sigmas(sigma);
  this->SetSigmaArray(sigmas);
}


// Set value of Sigma (an-isotropic)

template <typename TInputImage, typename TOutputImage>
void 
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetSigmaArray( const SigmaArrayType & sigma )
{
  if (this->m_Sigma != sigma)
    {
    this->m_Sigma = sigma;
    for( unsigned int i = 0; i<ImageDimension-1; i++ )
      {
      m_SmoothingFilters[ i ]->SetSigma( m_Sigma[i+1] );
      }
    m_FirstSmoothingFilter->SetSigma( m_Sigma[0] );
    
    this->Modified();
    }
}


// Get the sigma array.
template <typename TInputImage, typename TOutputImage>
typename SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>::SigmaArrayType
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GetSigmaArray() const
{
  return m_Sigma;
}


// Get the sigma scalar. If the sigma is anisotropic, we will just
// return the sigma along the first dimension.
template <typename TInputImage, typename TOutputImage>
typename SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>::ScalarRealType
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GetSigma() const
{
  return m_Sigma[0];
}


/**
 * Set Normalize Across Scale Space
 */
template <typename TInputImage, typename TOutputImage>
void 
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::SetNormalizeAcrossScale( bool normalize )
{

  m_NormalizeAcrossScale = normalize;

  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    m_SmoothingFilters[ i ]->SetNormalizeAcrossScale( normalize );
    }
  m_FirstSmoothingFilter->SetNormalizeAcrossScale( normalize );

  this->Modified();

}


//
//
//
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::GenerateInputRequestedRegion() throw(InvalidRequestedRegionError)
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();

  // This filter needs all of the input
  typename SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>::InputImagePointer image = const_cast<InputImageType *>( this->GetInput() );
  if( image )
    {
    image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
    }
}


//
//
//
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *output)
{
  TOutputImage *out = dynamic_cast<TOutputImage*>(output);

  if (out)
    {
    out->SetRequestedRegion( out->GetLargestPossibleRegion() );
    }
}

/**
 * Compute filter for Gaussian kernel
 */
template <typename TInputImage, typename TOutputImage >
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage >
::GenerateData(void)
{

  itkDebugMacro(<< "SmoothingRecursiveGaussianImageFilter generating data ");

  const typename TInputImage::ConstPointer   inputImage( this->GetInput() );

  const typename TInputImage::RegionType region = inputImage->GetRequestedRegion();
  const typename TInputImage::SizeType   size   = region.GetSize();
 
  for( unsigned int d=0; d < ImageDimension; d++)
    {
    if( size[d] < 4 )
      {
      itkExceptionMacro("The number of pixels along dimension " << d << " is less than 4. This filter requires a minimum of four pixels along the dimension to be processed.");
      }
    }


  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // Register the filter with the with progress accumulator using
  // equal weight proportion
  for( unsigned int i = 0; i<ImageDimension-1; i++ )
    {
    progress->RegisterInternalFilter(m_SmoothingFilters[i],1.0 / (ImageDimension));
    }

  progress->RegisterInternalFilter(m_FirstSmoothingFilter,1.0 / (ImageDimension));
  m_FirstSmoothingFilter->SetInput( inputImage );
  // graft our output to the internal filter to force the proper regions
  // to be generated
  m_CastingFilter->GraftOutput( this->GetOutput() );
  m_CastingFilter->Update();
  this->GraftOutput(m_CastingFilter->GetOutput());

}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
  os << "Sigma: " << m_Sigma << std::endl;
}


} // end namespace itk

#endif