File: itkVectorCurvatureNDAnisotropicDiffusionFunction.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (217 lines) | stat: -rw-r--r-- 6,576 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkVectorCurvatureNDAnisotropicDiffusionFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkVectorCurvatureNDAnisotropicDiffusionFunction_txx
#define __itkVectorCurvatureNDAnisotropicDiffusionFunction_txx

namespace itk {

template<class TImage>
double VectorCurvatureNDAnisotropicDiffusionFunction<TImage>
::m_MIN_NORM = 1.0e-10;
  
template<class TImage>
VectorCurvatureNDAnisotropicDiffusionFunction<TImage>
::VectorCurvatureNDAnisotropicDiffusionFunction()
{
  unsigned int i, j;
  RadiusType r;

  for (i = 0; i < ImageDimension; ++i)
    {
    r[i] = 1;
    }
  this->SetRadius(r);

  // Dummy neighborhood used to set up the slices.
  Neighborhood<PixelType, ImageDimension> it;
  it.SetRadius(r);
  
  // Slice the neighborhood
  m_Center =  it.Size() / 2;

  for (i = 0; i< ImageDimension; ++i)
    { m_Stride[i] = it.GetStride(i); }

  for (i = 0; i< ImageDimension; ++i)
    { x_slice[i]  = std::slice( m_Center - m_Stride[i], 3, m_Stride[i]); }
  
  for (i = 0; i< ImageDimension; ++i)
    {
    for (j = 0; j < ImageDimension; ++j)
      {
      // For taking derivatives in the i direction that are offset one
      // pixel in the j direction.
      xa_slice[i][j]
        = std::slice((m_Center + m_Stride[j])-m_Stride[i], 3, m_Stride[i]); 
      xd_slice[i][j]
        = std::slice((m_Center - m_Stride[j])-m_Stride[i], 3, m_Stride[i]);
      }
    }
  
  // Allocate the derivative operator.
  dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based
                         // fashion 
  dx_op.SetOrder(1);
  dx_op.CreateDirectional();
}

template<class TImage>
typename VectorCurvatureNDAnisotropicDiffusionFunction<TImage>::PixelType
VectorCurvatureNDAnisotropicDiffusionFunction<TImage>
::ComputeUpdate(const NeighborhoodType &it, void *,
                const FloatOffsetType&)
{
  unsigned int i, j, k;
  double speed;
  double dx_forward_Cn[ImageDimension][VectorDimension];
  double dx_backward_Cn[ImageDimension][VectorDimension];
  double propagation_gradient;
  double grad_mag_sq[VectorDimension];
  double grad_mag_sq_d[VectorDimension];
  double grad_mag[VectorDimension];
  double grad_mag_d[VectorDimension];
  double Cx[ImageDimension];
  double Cxd[ImageDimension];

  const ScalarValueType ScalarValueTypeZero = NumericTraits<ScalarValueType>::Zero;
  
  PixelType dx_forward[ImageDimension];
  PixelType dx_backward[ImageDimension];
  PixelType dx[ImageDimension];
  PixelType dx_aug;
  PixelType dx_dim;
  PixelType ans;

  // Calculate the partial derivatives for each dimension
  for (i = 0; i < ImageDimension; i++)
    {
    // ``Half'' derivatives
    dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
      - it.GetPixel(m_Center);
    dx_forward[i] = dx_forward[i] * this->m_ScaleCoefficients[i];
    dx_backward[i]= it.GetPixel(m_Center)
      - it.GetPixel(m_Center - m_Stride[i]);
    dx_backward[i] = dx_backward[i] * this->m_ScaleCoefficients[i];
      
    // Centralized differences
    dx[i]         = m_InnerProduct(x_slice[i], it, dx_op);
    dx[i] = dx[i] * this->m_ScaleCoefficients[i];
    }

  for (k = 0; k < VectorDimension; k++)
    {
    grad_mag_sq[k]   = 0.0;
    grad_mag_sq_d[k] = 0.0;
    for (i = 0; i < ImageDimension; i++)
      {
      // Gradient magnitude approximations
      grad_mag_sq[k] += dx_forward[i][k]  * dx_forward[i][k];
      grad_mag_sq_d[k] += dx_backward[i][k] * dx_backward[i][k];
      for (j = 0; j < ImageDimension; j++)
        {
        if (j != i)
          {
          dx_aug = m_InnerProduct(xa_slice[j][i],it, dx_op);
          dx_aug = dx_aug * this->m_ScaleCoefficients[j];
          dx_dim = m_InnerProduct(xd_slice[j][i],it, dx_op);
          dx_dim = dx_dim * this->m_ScaleCoefficients[j];
          grad_mag_sq[k] += 0.25f * (dx[j][k]+dx_aug[k]) * (dx[j][k]+dx_aug[k]);
          grad_mag_sq_d[k] += 0.25f * (dx[j][k]+dx_dim[k]) * (dx[j][k]+dx_dim[k]);
          }
        }
      }

    grad_mag[k]   = vcl_sqrt(m_MIN_NORM + grad_mag_sq[k]);
    grad_mag_d[k] = vcl_sqrt(m_MIN_NORM + grad_mag_sq_d[k]);
    // this grad mag should depend only on the current k
    for (i = 0; i < ImageDimension; i++)
      {
      dx_forward_Cn[i][k] = dx_forward[i][k]/grad_mag[k];
      dx_backward_Cn[i][k] = dx_backward[i][k]/grad_mag_d[k];
      }
    }

  double grad_mag_sq_tmp = 0.0;
  double grad_mag_sq_d_tmp = 0.0;

  for (k = 0; k < VectorDimension; k++)
    {
    grad_mag_sq_tmp += grad_mag_sq[k];
    grad_mag_sq_d_tmp += grad_mag_sq_d[k];
    }

  // this grad mag should depend on the sum over k's
  // Conductance Terms

  for (i = 0; i < ImageDimension; i++)
    {
    if (m_K == 0.0)
      {
      Cx[i] = 0.0;
      Cxd[i] = 0.0;
      }
    else
      {
      Cx[i]  = vcl_exp( grad_mag_sq_tmp   / m_K );
      Cxd[i] = vcl_exp( grad_mag_sq_d_tmp / m_K );
      }
    }

  for (k = 0; k < VectorDimension; k++)
    {
    // First order normalized finite-difference conductance products
    speed = 0.0;
    for (i = 0; i < ImageDimension; i++)
      {
      dx_forward_Cn[i][k] *= Cx[i];
      dx_backward_Cn[i][k] *= Cxd[i];
      
      // Second order conductance-modified curvature
      speed += (dx_forward_Cn[i][k] - dx_backward_Cn[i][k]);
      }
      
    // ``Upwind'' gradient magnitude term
    propagation_gradient = 0.0;
    if (speed > 0.0)
      {  
      for (i = 0; i < ImageDimension; i++)
        {
        propagation_gradient +=
          vnl_math_sqr( vnl_math_min(dx_backward[i][k], ScalarValueTypeZero) )
          + vnl_math_sqr( vnl_math_max(dx_forward[i][k],  ScalarValueTypeZero) );
        }
      }
    else
      {
      for (i = 0; i < ImageDimension; i++)
        {
        propagation_gradient +=
          vnl_math_sqr( vnl_math_max(dx_backward[i][k], ScalarValueTypeZero) )
          + vnl_math_sqr( vnl_math_min(dx_forward[i][k],  ScalarValueTypeZero) );
        }
      }
  
  
    ans[k] = vcl_sqrt(propagation_gradient) * speed;
    }
  
  return ans;
}

} // end namespace itk

#endif