1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFEMElement2DC0LinearLine.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif
#include "itkFEMElement2DC0LinearLine.h"
#include "vnl/vnl_math.h"
namespace itk {
namespace fem {
void
Element2DC0LinearLine
::GetIntegrationPointAndWeight(unsigned int i, VectorType& pt, Float& w, unsigned int order) const
{
// FIXME: range checking
// default integration order
if (order==0) { order=DefaultIntegrationOrder; }
pt.set_size(1);
pt[0]=gaussPoint[order][i];
w=gaussWeight[order][i];
}
unsigned int
Element2DC0LinearLine
::GetNumberOfIntegrationPoints(unsigned int order) const
{
// FIXME: range checking
// default integration order
if (order==0) { order=DefaultIntegrationOrder; }
return order;
}
Element2DC0LinearLine::VectorType
Element2DC0LinearLine
::ShapeFunctions( const VectorType& pt ) const
{
/* Linear Line element has two shape functions */
VectorType shapeF(2);
shapeF[0] = 0.5 - pt[0]/2.0;
shapeF[1] = 0.5 + pt[0]/2.0;
return shapeF;
}
void
Element2DC0LinearLine
::ShapeFunctionDerivatives( const VectorType&, MatrixType& shapeD ) const
{
shapeD.set_size(1,2);
shapeD[0][0] = -0.5;
shapeD[0][1] = 0.5;
}
void
Element2DC0LinearLine
::Jacobian( const VectorType&, MatrixType& J, const MatrixType*) const
{
// Since the line element defines only one global coordinate
// and lives in 2D space, we need to provide a custom Jacobian.
J.set_size(1,1);
// Get the length of the element
// Note: This simple implementation is only valid for linear line elements.
// For higher order elements we must integrate to obtain the exact
// element length
Float l=(this->m_node[1]->GetCoordinates() - this->m_node[0]->GetCoordinates()).magnitude();
J[0][0]=l/2;
}
bool
Element2DC0LinearLine
::GetLocalFromGlobalCoordinates( const VectorType& globalPt , VectorType& localPt ) const
{
// FIXME: write proper implementation
localPt=globalPt;
return false;
}
/**
* Draw the element on device context pDC.
*/
#ifdef FEM_BUILD_VISUALIZATION
void
Element2DC0LinearLine
::Draw(CDC* pDC, Solution::ConstPointer sol) const
{
int x1=m_node[0]->GetCoordinates()[0]*DC_Scale;
int y1=m_node[0]->GetCoordinates()[1]*DC_Scale;
int x2=m_node[1]->GetCoordinates()[0]*DC_Scale;
int y2=m_node[1]->GetCoordinates()[1]*DC_Scale;
x1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(0))*DC_Scale;
y1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(1))*DC_Scale;
x2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(0))*DC_Scale;
y2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(1))*DC_Scale;
pDC->MoveTo(x1,y1);
pDC->LineTo(x2,y2);
}
#endif
}} // end namespace itk::fem
|