File: itkFEMLoadImplementationGenericLandmarkLoad.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (90 lines) | stat: -rw-r--r-- 2,731 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkFEMLoadImplementationGenericLandmarkLoad.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif

#include "itkFEMLoadImplementationGenericLandmarkLoad.h"

namespace itk {
namespace fem {

/**
 * Handles LandmarkLoad on 2D linear quad stress element
 */
void
LoadImplementationGenericLandmarkLoad
::Implementation(Element::ConstPointer element, LoadLandmark::Pointer load, Element::VectorType& Fe)
{
  const unsigned int NnDOF=element->GetNumberOfDegreesOfFreedomPerNode();
  const unsigned int Nnodes=element->GetNumberOfNodes();

  Element::VectorType force( NnDOF, 0.0 );
  Element::VectorType disp( NnDOF, 0.0 );
  Element::VectorType new_source (NnDOF, 0.0);
  Element::VectorType shapeF;

  Fe.set_size(element->GetNumberOfDegreesOfFreedom());
  Fe.fill(0.0);

  // Retrieve the local coordinate at which the force acts
  Element::VectorType pt = load->GetPoint();


  // Retrieve the stored solution
  Solution::ConstPointer sol = load->GetSolution();
  
  // Determine the displacement at point pt
  const unsigned int TotalSolutionIndex=1;
  disp = element->InterpolateSolution( pt, (*sol), TotalSolutionIndex );

  // Convert the source to global coordinates
  new_source = load->GetSource() + disp;

   // Calculate the new force
  
  load->m_force =  disp;
  force =  (load->m_target-new_source) / load->eta;
 
//  std::cout << " disp " << disp <<  std::endl;
  //force /= vcl_sqrt(fmag);
  new_source = (load->GetTarget() - new_source);
//  std::cout << " force = " << force <<  " distance  " << new_source.magnitude() << std::endl;
  
  Element::Float curdist = new_source.magnitude();
  if ( curdist < 1.0 )
    {
    force.fill(0.0);
    }
  std::cout <<  " LM distance  " << curdist << std::endl;
  
  // "Integrate" at the location of the point load
  shapeF = element->ShapeFunctions(pt);
  
  // Calculate the equivalent nodal loads
  for(unsigned int n=0; n < Nnodes; n++)
    {
    for(unsigned int d=0; d < NnDOF; d++)
      {
      Fe[n*NnDOF+d] += shapeF[n] * force[d];
      }
    }
}

}} // end namespace itk::fem