1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFEMSolverCrankNicolson.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif
#include "itkFEMSolverCrankNicolson.h"
#include "itkFEMLoadNode.h"
#include "itkFEMLoadElementBase.h"
#include "itkFEMLoadBC.h"
#include "itkFEMLoadBCMFC.h"
#include "itkFEMLoadLandmark.h"
namespace itk {
namespace fem {
#define TOTE
void SolverCrankNicolson::InitializeForSolution()
{
m_ls->SetSystemOrder(NGFN+NMFC);
m_ls->SetNumberOfVectors(6);
m_ls->SetNumberOfSolutions(3);
m_ls->SetNumberOfMatrices(2);
m_ls->InitializeMatrix(SumMatrixIndex);
m_ls->InitializeMatrix(DifferenceMatrixIndex);
m_ls->InitializeVector(ForceTIndex);
m_ls->InitializeVector(ForceTotalIndex);
m_ls->InitializeVector(ForceTMinus1Index);
m_ls->InitializeVector(SolutionVectorTMinus1Index);
m_ls->InitializeVector(DiffMatrixBySolutionTMinus1Index);
m_ls->InitializeSolution(SolutionTIndex);
m_ls->InitializeSolution(TotalSolutionIndex);
m_ls->InitializeSolution(SolutionTMinus1Index);
}
/**
* Assemble the master stiffness matrix (also apply the MFCs to K)
*/
void SolverCrankNicolson::AssembleKandM()
{
// if no DOFs exist in a system, we have nothing to do
if (NGFN<=0) return;
Float lhsval;
Float rhsval;
NMFC=0; // number of MFC in a system
// temporary storage for pointers to LoadBCMFC objects
typedef std::vector<LoadBCMFC::Pointer> MFCArray;
MFCArray mfcLoads;
/*
* Before we can start the assembly procedure, we need to know,
* how many boundary conditions (MFCs) there are in a system.
*/
mfcLoads.clear();
// search for MFC's in Loads array, because they affect the master stiffness matrix
for(LoadArray::iterator l = load.begin(); l != load.end(); l++)
{
if ( LoadBCMFC::Pointer l1=dynamic_cast<LoadBCMFC*>( &(*(*l))) )
{
// store the index of an LoadBCMFC object for later
l1->Index=NMFC;
// store the pointer to a LoadBCMFC object for later
mfcLoads.push_back(l1);
// increase the number of MFC
NMFC++;
}
}
/**
* Now we can assemble the master stiffness matrix
* from element stiffness matrices
*/
InitializeForSolution();
/**
* Step over all elements
*/
for(ElementArray::iterator e = el.begin(); e != el.end(); e++)
{
vnl_matrix<Float> Ke;
(*e)->GetStiffnessMatrix(Ke); /*Copy the element stiffness matrix for faster access. */
vnl_matrix<Float> Me;
(*e)->GetMassMatrix(Me); /*Copy the element mass matrix for faster access. */
int Ne=(*e)->GetNumberOfDegreesOfFreedom(); /*... same for element DOF */
Me=Me*m_rho;
/* step over all rows in in element matrix */
for(int j=0; j<Ne; j++)
{
/* step over all columns in in element matrix */
for(int k=0; k<Ne; k++)
{
/* error checking. all GFN should be =>0 and <NGFN */
if ( (*e)->GetDegreeOfFreedom(j) >= NGFN ||
(*e)->GetDegreeOfFreedom(k) >= NGFN )
{
throw FEMExceptionSolution(__FILE__,__LINE__,"SolverCrankNicolson::AssembleKandM()","Illegal GFN!");
}
/* Here we finaly update the corresponding element
* in the master stiffness matrix. We first check if
* element in Ke is zero, to prevent zeros from being
* allocated in sparse matrix.
*/
if ( Ke(j,k) != Float(0.0) || Me(j,k) != Float(0.0) )
{
// left hand side matrix
lhsval=(Me(j,k) + m_alpha*m_deltaT*Ke(j,k));
m_ls->AddMatrixValue( (*e)->GetDegreeOfFreedom(j) ,
(*e)->GetDegreeOfFreedom(k),
lhsval, SumMatrixIndex );
// right hand side matrix
rhsval=(Me(j,k) - (1.-m_alpha)*m_deltaT*Ke(j,k));
m_ls->AddMatrixValue( (*e)->GetDegreeOfFreedom(j) ,
(*e)->GetDegreeOfFreedom(k),
rhsval, DifferenceMatrixIndex );
}
}
}
}
/**
* Step over all the loads to add the landmark contributions to the
* appropriate place in the stiffness matrix
*/
for(LoadArray::iterator l2 = load.begin(); l2 != load.end(); l2++)
{
if ( LoadLandmark::Pointer l3=dynamic_cast<LoadLandmark*>( &(*(*l2))) )
{
Element::Pointer ep = const_cast<Element*>( l3->el[0] );
Element::MatrixType Le;
ep->GetLandmarkContributionMatrix( l3->eta, Le );
int Ne = ep->GetNumberOfDegreesOfFreedom();
// step over all rows in element matrix
for (int j=0; j<Ne; j++)
{
// step over all columns in element matrix
for (int k=0; k<Ne; k++)
{
// error checking, all GFN should be >=0 and < NGFN
if ( ep->GetDegreeOfFreedom(j) >= NGFN ||
ep->GetDegreeOfFreedom(k) >= NGFN )
{
throw FEMExceptionSolution(__FILE__,__LINE__,"SolverCrankNicolson::AssembleKandM()","Illegal GFN!");
}
// Now update the corresponding element in the master
// stiffness matrix and omit the zeros for the sparseness
if ( Le(j,k) != Float(0.0) )
{
// lhs matrix
lhsval = m_alpha*m_deltaT*Le(j,k);
m_ls->AddMatrixValue( ep->GetDegreeOfFreedom(j),
ep->GetDegreeOfFreedom(k),
lhsval, SumMatrixIndex );
//rhs matrix
rhsval = (1.-m_alpha)*m_deltaT*Le(j,k);
m_ls->AddMatrixValue( ep->GetDegreeOfFreedom(j),
ep->GetDegreeOfFreedom(k),
rhsval, DifferenceMatrixIndex );
}
}
}
}
}
/* step over all types of BCs */
this->ApplyBC(); // BUG -- are BCs applied appropriately to the problem?
}
/**
* Assemble the master force vector
*/
void SolverCrankNicolson::AssembleFforTimeStep(int dim)
{
/* if no DOFs exist in a system, we have nothing to do */
if (NGFN<=0) return;
AssembleF(dim); // assuming assemblef uses index 0 in vector!
typedef std::map<Element::DegreeOfFreedomIDType,Float> BCTermType;
BCTermType bcterm;
/* Step over all Loads */
for(LoadArray::iterator l = load.begin(); l != load.end(); l++)
{
Load::Pointer l0=*l;
if ( LoadBC::Pointer l1=dynamic_cast<LoadBC*>(&*l0) )
{
bcterm[ l1->m_element->GetDegreeOfFreedom(l1->m_dof) ]=l1->m_value[dim];
}
} // end for LoadArray::iterator l
// Now set the solution t_minus1 vector to fit the BCs
for( BCTermType::iterator q = bcterm.begin(); q != bcterm.end(); q++)
{
m_ls->SetVectorValue(q->first,0.0,SolutionVectorTMinus1Index); //FIXME?
m_ls->SetSolutionValue(q->first,0.0,SolutionTMinus1Index); //FIXME?
m_ls->SetSolutionValue(q->first,0.0,TotalSolutionIndex);
}
m_ls->MultiplyMatrixVector(DiffMatrixBySolutionTMinus1Index,
DifferenceMatrixIndex,SolutionVectorTMinus1Index);
for (unsigned int index=0; index<NGFN; index++) RecomputeForceVector(index);
// Now set the solution and force vector to fit the BCs
for( BCTermType::iterator q = bcterm.begin(); q != bcterm.end(); q++)
{
m_ls->SetVectorValue(q->first,q->second,ForceTIndex);
}
}
void SolverCrankNicolson::RecomputeForceVector(unsigned int index)
{//
Float ft = m_ls->GetVectorValue(index,ForceTIndex);
Float ftm1 = m_ls->GetVectorValue(index,ForceTMinus1Index);
Float utm1 = m_ls->GetVectorValue(index,DiffMatrixBySolutionTMinus1Index);
Float f=m_deltaT*(m_alpha*ft+(1.-m_alpha)*ftm1)+utm1;
m_ls->SetVectorValue(index , f, ForceTIndex);
}
/**
* Solve for the displacement vector u
*/
void SolverCrankNicolson::Solve()
{
/* FIXME - must verify that this is correct use of wrapper */
/* FIXME Initialize the solution vector */
m_ls->InitializeSolution(SolutionTIndex);
m_ls->Solve();
// call this externally AddToDisplacements();
}
void SolverCrankNicolson::FindBracketingTriplet(Float* a, Float* b, Float* c)
{
// in 1-D domain, we want to find a < b < c , s.t. f(b) < f(a) && f(b) < f(c)
// see Numerical Recipes
Float Gold=1.618034;
Float Glimit=100.0;
Float Tiny=1.e-20;
Float ax, bx,cx;
ax=0.0; bx=1.;
Float fc;
Float fa=vcl_fabs(EvaluateResidual(ax));
Float fb=vcl_fabs(EvaluateResidual(bx));
Float ulim,u,r,q,fu,dum;
if ( fb > fa )
{
dum=ax; ax=bx; bx=dum;
dum=fb; fb=fa; fa=dum;
}
cx=bx+Gold*(bx-ax); // first guess for c - the 3rd pt needed to bracket the min
fc=vcl_fabs(EvaluateResidual(cx));
while (fb > fc /*&& vcl_fabs(ax) < 3. && vcl_fabs(bx) < 3. && vcl_fabs(cx) < 3.*/)
{
r=(bx-ax)*(fb-fc);
q=(bx-cx)*(fb-fa);
Float denom=(2.0*GSSign(GSMax(vcl_fabs(q-r),Tiny),q-r));
u=(bx)-((bx-cx)*q-(bx-ax)*r)/denom;
ulim=bx + Glimit*(cx-bx);
if ((bx-u)*(u-cx) > 0.0)
{
fu=vcl_fabs(EvaluateResidual(u));
if (fu < fc)
{
ax=bx;
bx=u;
*a=ax; *b=bx; *c=cx;
return;
}
else if (fu > fb)
{
cx=u;
*a=ax; *b=bx; *c=cx;
return;
}
u=cx+Gold*(cx-bx);
fu=vcl_fabs(EvaluateResidual(u));
}
else if ( (cx-u)*(u-ulim) > 0.0)
{
fu=vcl_fabs(EvaluateResidual(u));
if (fu < fc)
{
bx=cx; cx=u; u=cx+Gold*(cx-bx);
fb=fc; fc=fu; fu=vcl_fabs(EvaluateResidual(u));
}
}
else if ( (u-ulim)*(ulim-cx) >= 0.0)
{
u=ulim;
fu=vcl_fabs(EvaluateResidual(u));
}
else
{
u=cx+Gold*(cx-bx);
fu=vcl_fabs(EvaluateResidual(u));
}
ax=bx; bx=cx; cx=u;
fa=fb; fb=fc; fc=fu;
}
if ( vcl_fabs(ax) > 1.e3 || vcl_fabs(bx) > 1.e3 || vcl_fabs(cx) > 1.e3)
{
ax=-2.0; bx=1.0; cx=2.0;
} // to avoid crazy numbers caused by bad bracket (u goes nuts)
*a=ax; *b=bx; *c=cx;
}
Element::Float SolverCrankNicolson::BrentsMethod(Float tol,unsigned int MaxIters)
{
// We should now have a, b and c, as well as f(a), f(b), f(c),
// where b gives the minimum energy position;
Float CGOLD = 0.3819660;
Float ZEPS = 1.e-10;
Float ax=0.0, bx=1.0, cx=2.0;
FindBracketingTriplet(&ax, &bx, &cx);
Float xmin;
unsigned int iter;
Float a,b,d=0.,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm;
Float e=0.0; // the distance moved on the step before last;
a=((ax < cx) ? ax : cx);
b=((ax > cx) ? ax : cx);
x=w=v=bx;
fw=fv=fx=vcl_fabs(EvaluateResidual(x));
for (iter = 1; iter <=MaxIters; iter++)
{
xm=0.5*(a+b);
tol2=2.0*(tol1=tol*vcl_fabs(x)+ZEPS);
if (vcl_fabs(x-xm) <= (tol2-0.5*(b-a)))
{
xmin=x;
SetEnergyToMin(xmin);
return fx;
}
if (vcl_fabs(e) > tol1)
{
r=(x-w)*(fx-fv);
q=(x-v)*(fx-fw);
p=(x-v)*q-(x-w)*r;
q=2.0*(q-r);
if (q>0.0) p = -1.*p;
q=vcl_fabs(q);
etemp=e;
e=d;
if (vcl_fabs(p) >= vcl_fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
d=CGOLD*(e=(x>=xm ? a-x : b-x));
else
{
if (q == 0.0) q=q +ZEPS;
d=p/q;
u=x+d;
if (u-a < tol2 || b-u < tol2) d=GSSign(tol1,xm-x);
}
}
else
{
d=CGOLD*(e=(x>= xm ? a-x : b-x));
}
u=(vcl_fabs(d) >= tol1 ? x+d : x + GSSign(tol1,d));
fu=vcl_fabs(EvaluateResidual(u));
if (fu <= fx)
{
if ( u >= x ) a=x; else b=x;
v=w; w=x;x=u;
fv=fw; fw=fx; fx=fu;
}
else
{
if (u<x) a = u; else b=u;
if (fu <= fw || w ==x)
{
v=w;
w=u;
fv=fw;
fw=fu;
}
else if (fu <= fv || v==x || v == w)
{
v=u;
fv=fu;
}
}
}
xmin=x;
SetEnergyToMin(xmin);
return fx;
}
Element::Float SolverCrankNicolson::GoldenSection(Float tol,unsigned int MaxIters)
{
// We should now have a, b and c, as well as f(a), f(b), f(c),
// where b gives the minimum energy position;
Float ax, bx, cx;
FindBracketingTriplet(&ax, &bx, &cx);
Float xmin,fmin;
Float f1,f2,x0,x1,x2,x3;
Float R=0.6180339;
Float C=(1.0-R);
x0=ax;
x3=cx;
if (vcl_fabs(cx-bx) > vcl_fabs(bx-ax))
{
x1=bx;
x2=bx+C*(cx-bx);
}
else
{
x2=bx;
x1=bx-C*(bx-ax);
}
f1=vcl_fabs(EvaluateResidual(x1));
f2=vcl_fabs(EvaluateResidual(x2));
unsigned int iters=0;
while (vcl_fabs(x3-x0) > tol*(vcl_fabs(x1)+vcl_fabs(x2)) && iters < MaxIters)
{
iters++;
if (f2 < f1)
{
x0=x1; x1=x2; x2=R*x1+C*x3;
f1=f2; f2=vcl_fabs(EvaluateResidual(x2));
}
else
{
x3=x2; x2=x1; x1=R*x2+C*x0;
f2=f1; f1=vcl_fabs(EvaluateResidual(x1));
}
}
if (f1<f2)
{
xmin=x1;
fmin=f1;
}
else
{
xmin=x2;
fmin=f2;
}
SetEnergyToMin(xmin);
return fmin;
}
void SolverCrankNicolson::SetEnergyToMin(Float xmin)
{
for (unsigned int j=0; j<NGFN; j++)
{
Float SolVal;
Float FVal;
#ifdef LOCE
SolVal=xmin*m_ls->GetSolutionValue(j,SolutionTIndex)
+(1.-xmin)*m_ls->GetSolutionValue(j,SolutionTMinus1Index);
FVal=xmin*m_ls->GetVectorValue(j,ForceTIndex)
+(1.-xmin)*m_ls->GetVectorValue(j,ForceTMinus1Index);
#endif
#ifdef TOTE
SolVal=xmin*m_ls->GetSolutionValue(j,SolutionTIndex);// FOR TOT E
FVal=xmin*m_ls->GetVectorValue(j,ForceTIndex);
#endif
m_ls->SetSolutionValue(j,SolVal,SolutionTIndex);
m_ls->SetVectorValue(j,FVal,ForceTIndex);
}
}
Element::Float SolverCrankNicolson::GetDeformationEnergy(Float t)
{
Float DeformationEnergy=0.0;
Float iSolVal,jSolVal;
for (unsigned int i=0; i<NGFN; i++)
{
// forming U^T F
#ifdef LOCE
iSolVal=t*(m_ls->GetSolutionValue(i,SolutionTIndex))
+(1.-t)*m_ls->GetSolutionValue(i,SolutionTMinus1Index);
#endif
#ifdef TOTE
iSolVal=t*(m_ls->GetSolutionValue(i,SolutionTIndex))
+m_ls->GetSolutionValue(i,TotalSolutionIndex);// FOR TOT E
#endif
// forming U^T K U
Float TempRowVal=0.0;
for (unsigned int j=0; j<NGFN; j++)
{
#ifdef LOCE
jSolVal=t*(m_ls->GetSolutionValue(j,SolutionTIndex))
+(1.-t)*m_ls->GetSolutionValue(j,SolutionTMinus1Index);
#endif
#ifdef TOTE
jSolVal=t*(m_ls->GetSolutionValue(j,SolutionTIndex))
+m_ls->GetSolutionValue(j,TotalSolutionIndex);// FOR TOT E
#endif
TempRowVal += m_ls->GetMatrixValue(i,j,SumMatrixIndex)*jSolVal;
}
DeformationEnergy += iSolVal*TempRowVal;
}
return DeformationEnergy;
}
Element::Float SolverCrankNicolson::EvaluateResidual(Float t)
{
Float ForceEnergy=0.0,FVal=0.0;
Float DeformationEnergy=0.0;
Float iSolVal,jSolVal;
for (unsigned int i=0; i<NGFN; i++)
{
// forming U^T F
#ifdef LOCE
iSolVal=t*(m_ls->GetSolutionValue(i,SolutionTIndex))
+(1.-t)*m_ls->GetSolutionValue(i,SolutionTMinus1Index);
FVal=m_ls->GetVectorValue(i,ForceTIndex);
FVal=t*FVal+(1.-t)*m_ls->GetVectorValue(i,ForceTMinus1Index);
ForceEnergy += iSolVal*FVal;
#endif
#ifdef TOTE
FVal=FVal+0.0;
iSolVal=t*(m_ls->GetSolutionValue(i,SolutionTIndex))
+m_ls->GetSolutionValue(i,TotalSolutionIndex);// FOR TOT E
ForceEnergy += iSolVal*(m_ls->GetVectorValue(i,ForceTotalIndex)+
t*m_ls->GetVectorValue(i,ForceTIndex));// FOR TOT E
#endif
// forming U^T K U
Float TempRowVal=0.0;
for (unsigned int j=0; j<NGFN; j++)
{
#ifdef LOCE
jSolVal=t*(m_ls->GetSolutionValue(j,SolutionTIndex))
+(1.-t)*m_ls->GetSolutionValue(j,SolutionTMinus1Index);
#endif
#ifdef TOTE
jSolVal=t*(m_ls->GetSolutionValue(j,SolutionTIndex))
+m_ls->GetSolutionValue(j,TotalSolutionIndex);// FOR TOT E
#endif
TempRowVal += m_ls->GetMatrixValue(i,j,SumMatrixIndex)*jSolVal;
}
DeformationEnergy += iSolVal*TempRowVal;
}
Float Energy=(Float) vcl_fabs(DeformationEnergy-ForceEnergy);
return Energy;
}
/**
* Copy solution vector u to the corresponding nodal values, which are
* stored in node objects). This is standard post processing of the solution.
*/
void SolverCrankNicolson::AddToDisplacements(Float optimum)
{
/**
* Copy the resulting displacements from
* solution vector back to node objects.
*/
Float maxs=0.0,CurrentTotSolution,CurrentSolution,CurrentForce;
Float mins2=0.0, maxs2=0.0;
Float absmax=0.0;
for(unsigned int i=0;i<NGFN;i++)
{
#ifdef TOTE
CurrentSolution=m_ls->GetSolutionValue(i,SolutionTIndex);
#endif
if (CurrentSolution < mins2 )
{
mins2=CurrentSolution;
}
else if (CurrentSolution > maxs2 )
{
maxs2=CurrentSolution;
}
if (vcl_fabs(CurrentSolution) > absmax) absmax=vcl_fabs(CurrentSolution);
// note: set rather than add - i.e. last solution of system not total solution
#ifdef LOCE
CurrentSolution=optimum*m_ls->GetSolutionValue(i,SolutionTIndex)
+(1.-optimum)*m_ls->GetVectorValue(i,SolutionVectorTMinus1Index);
CurrentForce=optimum*m_ls->GetVectorValue(i,ForceTIndex)
+(1.-optimum)*m_ls->GetVectorValue(i,ForceTMinus1Index);
m_ls->SetVectorValue(i,CurrentSolution,SolutionVectorTMinus1Index);
m_ls->SetSolutionValue(i,CurrentSolution,SolutionTMinus1Index);
m_ls->SetVectorValue(i , CurrentForce, ForceTMinus1Index); // now set t minus one force vector correctly
#endif
#ifdef TOTE
CurrentSolution=optimum*CurrentSolution;
CurrentForce=optimum*m_ls->GetVectorValue(i,ForceTIndex);
m_ls->SetVectorValue(i,CurrentSolution,SolutionVectorTMinus1Index); // FOR TOT E
m_ls->SetSolutionValue(i,CurrentSolution,SolutionTMinus1Index); // FOR TOT E
m_ls->SetVectorValue(i,CurrentForce,ForceTMinus1Index);
#endif
m_ls->AddSolutionValue(i,CurrentSolution,TotalSolutionIndex);
m_ls->AddVectorValue(i , CurrentForce, ForceTotalIndex);
CurrentTotSolution=m_ls->GetSolutionValue(i,TotalSolutionIndex);
if ( vcl_fabs(CurrentTotSolution) > maxs )
{
maxs=vcl_fabs(CurrentTotSolution);
}
}
m_CurrentMaxSolution=absmax;
}
/**
* Compute maximum and minimum solution values.
*/
void SolverCrankNicolson::PrintMinMaxOfSolution()
{
/**
* Copy the resulting displacements from
* solution vector back to node objects.
*/
Float mins=0.0, maxs=0.0;
Float mins2=0.0, maxs2=0.0;
for(unsigned int i=0;i<NGFN;i++)
{
Float CurrentSolution=m_ls->GetSolutionValue(i,SolutionTIndex);
if (CurrentSolution < mins2 ) mins2=CurrentSolution;
else if (CurrentSolution > maxs2 ) maxs2=CurrentSolution;
CurrentSolution=m_ls->GetSolutionValue(i,TotalSolutionIndex);
if (CurrentSolution < mins ) mins=CurrentSolution;
else if (CurrentSolution > maxs ) maxs=CurrentSolution;
}
}
/**
* Copy solution vector u to the corresponding nodal values, which are
* stored in node objects). This is standard post processing of the solution.
*/
void SolverCrankNicolson::AverageLastTwoDisplacements(Float t)
{
Float maxs=0.0;
for(unsigned int i=0;i<NGFN;i++)
{
Float temp=m_ls->GetSolutionValue(i,SolutionTIndex);
Float temp2=m_ls->GetSolutionValue(i,SolutionTMinus1Index);
Float newsol=t*(temp)+(1.-t)*temp2;
m_ls->SetSolutionValue(i,newsol,SolutionTMinus1Index);
m_ls->SetVectorValue(i,newsol,SolutionVectorTMinus1Index);
m_ls->SetSolutionValue(i,newsol,SolutionTIndex);
if ( newsol > maxs ) maxs=newsol;
}
}
void SolverCrankNicolson::ZeroVector(int which)
{
for(unsigned int i=0;i<NGFN;i++)
{
m_ls->SetVectorValue(i,0.0,which);
}
}
void SolverCrankNicolson::PrintDisplacements()
{
std::cout << " printing current displacements " << std::endl;
for(unsigned int i=0;i<NGFN;i++)
{
std::cout << m_ls->GetSolutionValue(i,TotalSolutionIndex) << std::endl;
}
}
void SolverCrankNicolson::PrintForce()
{
std::cout << " printing current forces " << std::endl;
for(unsigned int i=0;i<NGFN;i++)
{
std::cout << m_ls->GetVectorValue(i,ForceTIndex) << std::endl;
}
}
}} // end namespace itk::fem
|