File: itkErrorBackPropagationLearningWithMomentum.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (128 lines) | stat: -rw-r--r-- 4,349 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkErrorBackPropagationLearningWithMomentum.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkErrorBackPropagationLearningWithMomentum_txx
#define __itkErrorBackPropagationLearningWithMomentum_txx

#include "itkErrorBackPropagationLearningWithMomentum.h"
#include <fstream>


namespace itk
{
namespace Statistics
{

template<class LayerType, class TTargetVector>
ErrorBackPropagationLearningWithMomentum <LayerType,TTargetVector>
::ErrorBackPropagationLearningWithMomentum()
{
  m_Momentum = 0.9; //Default
}

template<class LayerType, class TTargetVector>
void
ErrorBackPropagationLearningWithMomentum<LayerType,TTargetVector>
::Learn(LayerInterfaceType * layer, ValueType lr)
{
  typedef typename LayerInterfaceType::WeightSetType::Pointer WeightSetPointer;
  WeightSetPointer outputweightset;
  WeightSetPointer inputweightset;
  outputweightset = layer->GetOutputWeightSet();
  inputweightset = layer->GetInputWeightSet();

  typedef typename LayerInterfaceType::ValuePointer InterfaceValuePointer;
  InterfaceValuePointer DWvalues_m_1 = inputweightset->GetPrevDWValues();
  InterfaceValuePointer DWvalues_m_2 = inputweightset->GetPrev_m_2DWValues();
  InterfaceValuePointer currentdeltavalues = inputweightset->GetTotalDeltaValues();
  InterfaceValuePointer DBValues = inputweightset->GetTotalDeltaBValues();
  InterfaceValuePointer PrevDBValues = inputweightset->GetPrevDBValues();

  int input_cols = inputweightset->GetNumberOfInputNodes();
  int input_rows = inputweightset->GetNumberOfOutputNodes();

  vnl_matrix<ValueType> DW_m_1(input_rows, input_cols);
  DW_m_1.fill(0);
  vnl_matrix<ValueType> DW_m_2(input_rows, input_cols);
  DW_m_2.fill(0);

  vnl_vector<ValueType> DB_temp;
  DB_temp.set_size(inputweightset->GetNumberOfOutputNodes());
  DB_temp.fill(0);
  vnl_vector<ValueType> DB;
  vnl_vector<ValueType> DB_m_1;
  DB.set_size(inputweightset->GetNumberOfOutputNodes());
  DB_m_1.set_size(inputweightset->GetNumberOfOutputNodes());
  DB.fill(0);
  DB_m_1.fill(0);
  DB.copy_in(DBValues);
  DB_m_1.copy_in(PrevDBValues);
  
  if (!inputweightset->GetFirstPass())
    {
    DW_m_1.copy_in(DWvalues_m_1);
    }
  if (!inputweightset->GetSecondPass())
    {
    DW_m_2.copy_in(DWvalues_m_2);
    }
  vnl_matrix<ValueType> DW_temp(currentdeltavalues,
                                           inputweightset->GetNumberOfOutputNodes(),
                                           inputweightset->GetNumberOfInputNodes());

  vnl_matrix<ValueType> DW_temp1(inputweightset->GetNumberOfOutputNodes(),
                                           inputweightset->GetNumberOfInputNodes());
  DW_temp1.fill(0);
  
  //Momentum
  if (!inputweightset->GetFirstPass())
    {
    DW_temp1 = (DW_temp * lr *(1 - m_Momentum)) + (DW_m_1 * m_Momentum);
    }
  else
    {
    DW_temp1 = DW_temp*lr;
    }
  DB_temp=(DB*lr);
  inputweightset->SetDWValues(DW_temp1.data_block());
  inputweightset->SetDBValues(DB_temp.data_block());
}

template<class LayerType, class TTargetVector>
void
ErrorBackPropagationLearningWithMomentum<LayerType,TTargetVector>
::Learn( LayerInterfaceType * itkNotUsed(layer), TTargetVector itkNotUsed(errors),ValueType itkNotUsed(lr))
{
  //It appears that this interface should not be called.
  //itkExceptionMacrto(<< "This should never be called");
}

/** Print the object */
template<class LayerType, class TTargetVector>
void  
ErrorBackPropagationLearningWithMomentum<LayerType,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const 
{ 
  os << indent << "ErrorBackPropagationLearningWithMomentum(" << this << ")" << std::endl; 
  os << indent << "m_Momentum = " << m_Momentum << std::endl;
  Superclass::PrintSelf( os, indent ); 
} 

} // end namespace Statistics
} // end namespace itk

#endif