File: itkMultilayerNeuralNetworkBase.h

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (134 lines) | stat: -rw-r--r-- 4,867 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkMultilayerNeuralNetworkBase.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkMultilayerNeuralNetworkBase_h
#define __itkMultilayerNeuralNetworkBase_h

#include "itkNeuralNetworkObject.h"
#include "itkLayerBase.h"

namespace itk
{
namespace Statistics
{

template<class TMeasurementVector, class TTargetVector,class TLearningLayer=LayerBase<TMeasurementVector, TTargetVector> >
class MultilayerNeuralNetworkBase : public NeuralNetworkObject<TMeasurementVector, TTargetVector>
{
public:
  
  typedef MultilayerNeuralNetworkBase  Self;
  typedef NeuralNetworkObject<TMeasurementVector, TTargetVector>
                                       Superclass;
  typedef SmartPointer<Self>           Pointer;
  typedef SmartPointer<const Self>     ConstPointer;
  
  itkTypeMacro(MultilayerNeuralNetworkBase, NeuralNetworkObject);

  /** New macro for creation of through a Smart Pointer. */
  itkNewMacro( Self );

  typedef typename Superclass::ValueType             ValueType;
  typedef typename Superclass::MeasurementVectorType MeasurementVectorType;
  typedef typename Superclass::TargetVectorType      TargetVectorType;
  typedef typename Superclass::NetworkOutputType     NetworkOutputType;

  typedef typename Superclass::LayerInterfaceType        LayerInterfaceType;
  
  typedef TLearningLayer                                 LearningLayerType;
  typedef LearningFunctionBase<typename TLearningLayer::LayerInterfaceType, TTargetVector>
                                                         LearningFunctionInterfaceType;

  typedef std::vector<typename LayerInterfaceType::WeightSetInterfaceType::Pointer>
                                                         WeightVectorType;
        typedef std::vector<typename LayerInterfaceType::Pointer>
                                                         LayerVectorType;

        typedef TransferFunctionBase<ValueType>          TransferFunctionInterfaceType;
        typedef InputFunctionBase<ValueType*, ValueType> InputFunctionInterfaceType;

//#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  itkSetMacro(NumOfLayers, int);
  itkGetConstReferenceMacro(NumOfLayers, int);

  itkSetMacro(NumOfWeightSets, int);
  itkGetConstReferenceMacro(NumOfWeightSets, int);
#else
  int GetNumOfLayers(void) const
    {
    return m_Layers.size();
    }
  int GetNumOfWeightSets(void) const
    {
    return m_Weights.size();
    }
  
#endif

  void AddLayer(LayerInterfaceType *);
  LayerInterfaceType * GetLayer(int layer_id);
  const LayerInterfaceType * GetLayer(int layer_id) const;
  
  void AddWeightSet(typename LayerInterfaceType::WeightSetInterfaceType*);
  typename LayerInterfaceType::WeightSetInterfaceType* GetWeightSet(unsigned int id)
    {
    return m_Weights[id].GetPointer();
    }
#ifdef __USE_OLD_INTERFACE
  const typename LayerInterfaceType::WeightSetInterfaceType* GetWeightSet(unsigned int id) const;
#endif
  
  void SetLearningFunction(LearningFunctionInterfaceType* f);

  virtual NetworkOutputType GenerateOutput(TMeasurementVector samplevector);

  virtual void BackwardPropagate(NetworkOutputType errors);
  virtual void UpdateWeights(ValueType);

  void SetLearningRule(LearningFunctionInterfaceType*);

  void SetLearningRate(ValueType learningrate);

  void InitializeWeights();

protected:
  MultilayerNeuralNetworkBase();
  ~MultilayerNeuralNetworkBase();

  LayerVectorType                                   m_Layers;
  WeightVectorType                                  m_Weights;
  typename LearningFunctionInterfaceType::Pointer   m_LearningFunction;
  ValueType                                         m_LearningRate;
  //#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  //These are completely redundant variables that can be more reliably queried from
  // m_Layers->size() and m_Weights->size();
  int                             m_NumOfLayers;
  int                             m_NumOfWeightSets;
#endif
  /** Method to print the object. */
  virtual void PrintSelf( std::ostream& os, Indent indent ) const;
};

} // end namespace Statistics
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkMultilayerNeuralNetworkBase.txx"
#endif

#endif