1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkQuickPropLearningRule.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkQuickPropLearningRule_txx
#define __itkQuickPropLearningRule_txx
#include "itkQuickPropLearningRule.h"
namespace itk
{
namespace Statistics
{
template<class LayerType, class TTargetVector>
QuickPropLearningRule <LayerType,TTargetVector>
::QuickPropLearningRule()
{
m_Momentum = 0.9; //Default
m_Max_Growth_Factor = 1.75;
m_Decay = -0.0001;
m_SplitEpsilon = 1;
m_Epsilon = 0.55;
m_Threshold = 0.0;
m_SigmoidPrimeOffset = 0;
m_SplitEpsilon = 0;
}
template<class LayerType, class TTargetVector>
void
QuickPropLearningRule<LayerType,TTargetVector>
::Learn(LayerType* layer, ValueType itkNotUsed(lr))
{
typename LayerType::WeightSetType::Pointer inputweightset;
inputweightset = layer->GetInputWeightSet();
//For Quickprop
typename LayerType::ValuePointer DWvalues_m_1 = inputweightset->GetPrevDWValues();
typename LayerType::ValuePointer Delvalues_m_1 = inputweightset->GetPrevDeltaValues();
typename LayerType::ValuePointer Delvalues = inputweightset->GetTotalDeltaValues();
typename LayerType::ValuePointer weightvalues = inputweightset->GetWeightValues();
unsigned int input_cols = inputweightset->GetNumberOfInputNodes();
unsigned int input_rows = inputweightset->GetNumberOfOutputNodes();
vnl_matrix<ValueType> DW_m_1(input_rows, input_cols);
DW_m_1.fill(0);
vnl_matrix<ValueType> Del_m_1(input_rows, input_cols);
Del_m_1.fill(0);
DW_m_1.copy_in(DWvalues_m_1);
Del_m_1.copy_in(Delvalues_m_1);
vnl_matrix<ValueType> DW_temp(inputweightset->GetNumberOfOutputNodes(),
inputweightset->GetNumberOfInputNodes());
vnl_matrix<ValueType> weights(inputweightset->GetNumberOfOutputNodes(),
inputweightset->GetNumberOfInputNodes());
DW_temp.copy_in(Delvalues);
weights.copy_in(weightvalues);
vnl_matrix<ValueType> temp(inputweightset->GetNumberOfOutputNodes(),
inputweightset->GetNumberOfInputNodes());
temp.fill(0);
//get bias
vnl_vector<ValueType> delb;
delb.set_size(inputweightset->GetNumberOfOutputNodes());
delb.fill(0);
vnl_vector<ValueType> delb_m_1;
delb_m_1.set_size(inputweightset->GetNumberOfOutputNodes());
delb_m_1.fill(0);
vnl_vector<ValueType> DB_m_1;
DB_m_1.set_size(inputweightset->GetNumberOfOutputNodes());
DB_m_1.fill(0);
vnl_vector<ValueType> DB;
DB.set_size(inputweightset->GetNumberOfOutputNodes());
DB.fill(0);
typename LayerType::ValuePointer deltaBValues = inputweightset->GetTotalDeltaBValues();
delb.copy_in(deltaBValues);
typename LayerType::ValuePointer prevDeltaBValues = inputweightset->GetPrevDeltaBValues();
delb_m_1.copy_in(prevDeltaBValues);
typename LayerType::ValuePointer prevDBValues = inputweightset->GetPrevDBValues();
DB_m_1.copy_in(prevDBValues);
DW_temp.set_column(input_cols-1,delb);
Del_m_1.set_column(input_cols-1,delb_m_1);
DW_m_1.set_column(input_cols-1,DB_m_1);
ValueType step_val;
float shrink_factor =(float)m_Max_Growth_Factor/(1.0+ m_Max_Growth_Factor);
for(unsigned int i=0; i<input_rows; i++)
{
for(unsigned int j=0; j<input_cols; j++)
{
step_val=0;
DW_temp(i,j) += m_Decay*weights(i,j);
if(DW_m_1(i,j)>m_Threshold)
{
if(DW_temp(i,j)>0.0)
{
step_val += (m_Epsilon *DW_temp(i,j));
}
if(DW_temp(i,j) >(shrink_factor*Del_m_1(i,j)))
{
step_val += (m_Max_Growth_Factor*DW_m_1(i,j));
}
else
{
step_val += ((DW_temp(i,j)/(Del_m_1(i,j)-DW_temp(i,j)))*DW_m_1(i,j));
}
}
else if(DW_m_1(i,j)< -m_Threshold)
{
if(DW_temp(i,j)<0.0)
{
step_val += (m_Epsilon *DW_temp(i,j));
}
if(DW_temp(i,j) <(shrink_factor *Del_m_1(i,j)))
{
step_val += (m_Max_Growth_Factor *DW_m_1(i,j));
}
else
{
step_val += ((DW_temp(i,j)/(Del_m_1(i,j)-DW_temp(i,j)))*DW_m_1(i,j));
}
}
else
{
step_val += (m_Epsilon*DW_temp(i,j))+(m_Momentum *DW_m_1(i,j));
}
temp(i,j)=step_val;
}// inner for
}//outer for
DB=temp.get_column(input_cols-1);
inputweightset->SetDBValues(DB.data_block());
inputweightset->SetDWValues(temp.data_block());
}
template<class LayerType, class TTargetVector>
void
QuickPropLearningRule<LayerType,TTargetVector>
::Learn(LayerType* itkNotUsed(layer), TTargetVector itkNotUsed(errors),ValueType itkNotUsed(lr))
{
}
/** Print the object */
template<class LayerType, class TTargetVector>
void
QuickPropLearningRule<LayerType,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << "QuickPropLearningRule(" << this << ")" << std::endl;
os << indent << "m_Momentum = " << m_Momentum << std::endl;
os << indent << "m_Max_Growth_Factor = " << m_Max_Growth_Factor << std::endl;
os << indent << "m_Decay = " << m_Decay << std::endl;
os << indent << "m_Threshold = " << m_Threshold << std::endl;
os << indent << "m_Epsilon = " << m_Epsilon << std::endl;
os << indent << "m_SigmoidPrimeOffset = " << m_SigmoidPrimeOffset << std::endl;
os << indent << "m_SplitEpsilon = " << m_SplitEpsilon << std::endl;
Superclass::PrintSelf( os, indent );
}
} // end namespace Statistics
} // end namespace itk
#endif
|