File: itkRBFBackPropagationLearningFunction.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (101 lines) | stat: -rw-r--r-- 3,605 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkRBFBackPropagationLearningFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkRBFBackPropagationLearningFunction_txx
#define __itkRBFBackPropagationLearningFunction_txx

#include "itkRBFBackPropagationLearningFunction.h"

namespace itk
{
namespace Statistics
{

template<class LayerType, class TTargetVector>
RBFBackPropagationLearningFunction<LayerType,TTargetVector>
::RBFBackPropagationLearningFunction()
{
  m_LearningRate1 = 0.05;
  m_LearningRate2 = 3;
  m_LearningRate3 = 0.75;
}

template<class LayerType, class TTargetVector>
void
RBFBackPropagationLearningFunction<LayerType,TTargetVector>
::Learn(LayerType* layer,ValueType lr)
{
  typename LayerType::WeightSetType::Pointer outputweightset;
  typename LayerType::WeightSetType::Pointer inputweightset;
  outputweightset = layer->GetOutputWeightSet();
  inputweightset = layer->GetInputWeightSet();
 
  typedef typename LayerType::InputVectorType  InputVectorType;
  typedef typename LayerType::OutputVectorType OutputVectorType;

  typedef RBFLayer<InputVectorType,OutputVectorType> RbfLayerType;
  typedef typename RbfLayerType::InternalVectorType  ArrayType;
  typename LayerType::ValuePointer currentdeltavalues = inputweightset->GetTotalDeltaValues();
  vnl_matrix<ValueType> DW_temp(currentdeltavalues,inputweightset->GetNumberOfOutputNodes(),
                                           inputweightset->GetNumberOfInputNodes());
  typename LayerType::ValuePointer DBValues = inputweightset->GetDeltaBValues();
  vnl_vector<ValueType> DB;
  DB.set_size(inputweightset->GetNumberOfOutputNodes());
  DB.fill(0);
  DB.copy_in(DBValues);

  if(layer->GetLayerTypeCode() == LayerInterfaceType::OUTPUTLAYER) //If output layer do back propagation
    {
    DW_temp *= lr;
    inputweightset->SetDWValues(DW_temp.data_block());
    DB *= lr;
    inputweightset->SetDBValues(DB.data_block()); 
    }
  else //else update centers, widths using gradient descent
    { 
    DW_temp *= m_LearningRate2;
    DB *= m_LearningRate3;

    inputweightset->SetDWValues(DW_temp.data_block());
    inputweightset->SetDBValues(DB.data_block());
    }
}

template<class LayerType, class TTargetVector>
void
RBFBackPropagationLearningFunction<LayerType,TTargetVector>
::Learn(LayerType* itkNotUsed(layer), TTargetVector itkNotUsed(errors), ValueType itkNotUsed(lr))
{
}

/** Print the object */
template<class LayerType, class TTargetVector>
void  
RBFBackPropagationLearningFunction<LayerType,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const 
{ 
  os << indent << "RBFBackPropagationLearningFunction(" << this << ")" << std::endl; 
  os << indent << "m_LearningRate1 = " << m_LearningRate1 << std::endl;
  os << indent << "m_LearningRate2 = " << m_LearningRate2 << std::endl;
  os << indent << "m_LearningRate3 = " << m_LearningRate3 << std::endl;
  os << indent << "m_OutputErrors = " << m_OutputErrors << std::endl;
  Superclass::PrintSelf( os, indent ); 
} 

} // end namespace Statistics
} // end namespace itk

#endif