1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkTrainingFunctionBase.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkTrainingFunctionBase_txx
#define __itkTrainingFunctionBase_txx
#include "itkTrainingFunctionBase.h"
namespace itk
{
namespace Statistics
{
template<class TSample, class TTargetVector, class ScalarType>
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::TrainingFunctionBase()
{
m_PerformanceFunction = DefaultPerformanceType::New();
m_Iterations = 0;
m_TrainingSamples = NULL;
m_SampleTargets = NULL;
m_LearningRate = 1.0;
}
template<class TSample, class TTargetVector, class ScalarType>
void TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetTrainingSamples(TSample* samples)
{
m_TrainingSamples = samples;
std::cout << "Training functionSample Size=" << samples->Size() << std::endl;
typename TSample::ConstIterator iter = samples->Begin();
while (iter != samples->End())
{
//m_InputSamples.push_back(defaultconverter(iter.GetMeasurementVector()));
m_InputSamples.push_back(iter.GetMeasurementVector());
++iter;
}
}
template<class TSample, class TTargetVector, class ScalarType>
void TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetTargetValues(TTargetVector* targets)
{
typename TTargetVector::ConstIterator iter = targets->Begin();
while (iter != targets->End())
{
//m_Targets.push_back(targetconverter(iter.GetMeasurementVector()));
m_Targets.push_back(iter.GetMeasurementVector());
++iter;
}
std::cout << "Num of Sample Targets converted= " << m_Targets.size()
<< std::endl;
this->Modified();
}
template<class TSample, class TTargetVector, class ScalarType>
void
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetLearningRate(ValueType lr)
{
m_LearningRate = lr;
this->Modified();
}
template<class TSample, class TTargetVector, class ScalarType>
typename TrainingFunctionBase<TSample,TTargetVector,ScalarType>::ValueType
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::GetLearningRate()
{
return m_LearningRate;
}
template<class TSample, class TTargetVector, class ScalarType>
void TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::SetPerformanceFunction(PerformanceFunctionType* f)
{
m_PerformanceFunction=f;
this->Modified();
}
/** Print the object */
template<class TSample, class TTargetVector, class ScalarType>
void
TrainingFunctionBase<TSample,TTargetVector,ScalarType>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << "TrainingFunctionBase(" << this << ")" << std::endl;
os << indent << "m_PerformanceFunction = " << m_PerformanceFunction << std::endl;
os << indent << "m_Iterations = " << m_Iterations << std::endl;
if(m_TrainingSamples)
{
os << indent << "m_TrainingSamples = " << m_TrainingSamples << std::endl;
}
if(m_SampleTargets)
{
os << indent << "m_SampleTargets = " << m_SampleTargets << std::endl;
}
//os << indent << "m_InputSamples = " << m_InputSamples << std::endl;
//os << indent << "m_Targets = " << m_Targets << std::endl;
os << indent << "m_LearningRate = " << m_LearningRate << std::endl;
Superclass::PrintSelf( os, indent );
}
} // end namespace Statistics
} // end namespace itk
#endif
|