| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 
 | /*=========================================================================
  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkTwoHiddenLayerBackPropagationNeuralNetwork.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$
  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkTwoHiddenLayerBackPropagationNeuralNetwork_txx
#define __itkTwoHiddenLayerBackPropagationNeuralNetwork_txx
#include "itkTwoHiddenLayerBackPropagationNeuralNetwork.h"
namespace itk
{
namespace Statistics
{
/** Constructor */
template<class TMeasurementVector, class TTargetVector>
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::TwoHiddenLayerBackPropagationNeuralNetwork()
{
  typedef IdentityTransferFunction<ValueType> tfType1;
  m_InputTransferFunction = tfType1::New();
  typedef TanSigmoidTransferFunction<ValueType> tfType2;
  m_FirstHiddenTransferFunction = tfType2::New();
  m_SecondHiddenTransferFunction = tfType2::New();
  typedef TanSigmoidTransferFunction<ValueType> tfType3;
  m_OutputTransferFunction= tfType3::New();
  typedef SumInputFunction<ValueType*, ValueType> InputFcnType;
  m_InputFunction=InputFcnType::New();
  m_NumOfInputNodes = 0;
  m_NumOfFirstHiddenNodes = 0;
  m_NumOfSecondHiddenNodes = 0;
  m_NumOfOutputNodes = 0;
  m_FirstHiddenLayerBias  = 1.0;
  m_SecondHiddenLayerBias  = 1.0;
  m_OutputLayerBias  = 1.0;
}
/** Intialize */
template<class TMeasurementVector, class TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::Initialize()
{
  if(m_NumOfInputNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Input Nodes must be greater than 0!");
    }
  if(m_NumOfFirstHiddenNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Hidden Layer 1 Nodes must be greater than 0!");
    }
  if(m_NumOfSecondHiddenNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Hidden Layer 2 Nodes must be greater than 0!");
    }
  if(m_NumOfOutputNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Output Nodes must be greater than 0!");
    }
  //Define weights of Nodes
  typename LearningLayerType::WeightSetType::Pointer InputLayerOutputWeights = LearningLayerType::WeightSetType::New();
  InputLayerOutputWeights->SetNumberOfInputNodes(m_NumOfInputNodes);
  InputLayerOutputWeights->SetNumberOfOutputNodes(m_NumOfFirstHiddenNodes);
  InputLayerOutputWeights->SetCompleteConnectivity();
  InputLayerOutputWeights->SetBias(m_FirstHiddenLayerBias);
  InputLayerOutputWeights->SetRange(1.0);  //0.5
  InputLayerOutputWeights->Initialize();
  typename LearningLayerType::WeightSetType::Pointer HiddenLayer1OutputWeights = LearningLayerType::WeightSetType::New();
  HiddenLayer1OutputWeights->SetNumberOfInputNodes(m_NumOfFirstHiddenNodes);
  HiddenLayer1OutputWeights->SetNumberOfOutputNodes(m_NumOfSecondHiddenNodes);
  HiddenLayer1OutputWeights->SetCompleteConnectivity();
  HiddenLayer1OutputWeights->SetBias(m_SecondHiddenLayerBias);
  HiddenLayer1OutputWeights->SetRange(1.0); //0.5
  HiddenLayer1OutputWeights->Initialize();
  typename LearningLayerType::WeightSetType::Pointer HiddenLayer2OutputWeights = LearningLayerType::WeightSetType::New();
  HiddenLayer2OutputWeights->SetNumberOfInputNodes(m_NumOfSecondHiddenNodes);
  HiddenLayer2OutputWeights->SetNumberOfOutputNodes(m_NumOfOutputNodes);
  HiddenLayer2OutputWeights->SetCompleteConnectivity();
  HiddenLayer2OutputWeights->SetBias(m_OutputLayerBias);
  HiddenLayer2OutputWeights->SetRange(1.0); //0.5
  HiddenLayer2OutputWeights->Initialize();
  //Define layers
  typename LearningLayerType::Pointer inputlayer = LearningLayerType::New();
  inputlayer->SetLayerTypeCode(LearningLayerType::INPUTLAYER);
  inputlayer->SetNumberOfNodes(m_NumOfInputNodes);
  inputlayer->SetTransferFunction(m_InputTransferFunction);
  inputlayer->SetNodeInputFunction(m_InputFunction);
  typename LearningLayerType::Pointer hiddenlayer1 = LearningLayerType::New();
  hiddenlayer1->SetLayerTypeCode(LearningLayerType::HIDDENLAYER);
  hiddenlayer1->SetNumberOfNodes(m_NumOfFirstHiddenNodes);
  hiddenlayer1->SetTransferFunction(m_FirstHiddenTransferFunction);
  hiddenlayer1->SetNodeInputFunction(m_InputFunction);
  typename LearningLayerType::Pointer hiddenlayer2 = LearningLayerType::New();
  hiddenlayer2->SetLayerTypeCode(LearningLayerType::HIDDENLAYER);
  hiddenlayer2->SetNumberOfNodes(m_NumOfSecondHiddenNodes);
  hiddenlayer2->SetTransferFunction(m_SecondHiddenTransferFunction);
  hiddenlayer2->SetNodeInputFunction(m_InputFunction);
  typename LearningLayerType::Pointer outputlayer = LearningLayerType::New();
  outputlayer->SetLayerTypeCode(LearningLayerType::OUTPUTLAYER);
  outputlayer->SetNumberOfNodes(m_NumOfOutputNodes);
  outputlayer->SetTransferFunction(m_OutputTransferFunction);
  outputlayer->SetNodeInputFunction(m_InputFunction);
  Superclass::AddLayer(inputlayer);
  Superclass::AddLayer(hiddenlayer1);
  Superclass::AddLayer(hiddenlayer2);
  Superclass::AddLayer(outputlayer);
  Superclass::AddWeightSet(InputLayerOutputWeights);
  Superclass::AddWeightSet(HiddenLayer1OutputWeights);
  Superclass::AddWeightSet(HiddenLayer2OutputWeights);
  //HACK:  NOTE:  You can not set the WeightSets until after the layers are added to the network because
  //       the LayerId's must have been set prior to the Weights being added to the layers.
  //       The ordering of putting together the networks is crucial.  Layers must be added to network
  //       prior to weights being added to layers.
  inputlayer->SetOutputWeightSet(InputLayerOutputWeights);
  hiddenlayer1->SetInputWeightSet(InputLayerOutputWeights);
  hiddenlayer1->SetOutputWeightSet(HiddenLayer1OutputWeights);
  hiddenlayer2->SetInputWeightSet(HiddenLayer1OutputWeights);
  hiddenlayer2->SetOutputWeightSet(HiddenLayer2OutputWeights);
  outputlayer->SetInputWeightSet(HiddenLayer2OutputWeights);
}
template<class TMeasurementVector, class TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetInputTransferFunction(TransferFunctionInterfaceType* f)
{
  m_InputTransferFunction=f;
}
template<class TMeasurementVector, class TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetFirstHiddenTransferFunction(TransferFunctionInterfaceType* f)
{
  m_FirstHiddenTransferFunction=f;
}
template<class TMeasurementVector, class TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetOutputTransferFunction(TransferFunctionInterfaceType* f)
{
  m_OutputTransferFunction=f;
}
template<class TMeasurementVector, class TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetInputFunction(InputFunctionInterfaceType* f)
{
  m_InputFunction=f;
}
/** Generate output */
template<class TMeasurementVector, class TTargetVector>
typename TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector, TTargetVector>::NetworkOutputType
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::GenerateOutput(TMeasurementVector samplevector)
{
  return Superclass::GenerateOutput(samplevector);
}
/** Print the object */
template<class TMeasurementVector, class TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  os << indent << "TwoHiddenLayerBackPropagationNeuralNetwork(" << this << ")" << std::endl;
  os << indent << "m_NumOfInputNodes = " << m_NumOfInputNodes << std::endl;
  os << indent << "m_NumOfFirstHiddenNodes = " << m_NumOfFirstHiddenNodes << std::endl;
  os << indent << "m_NumOfSecondHiddenNodes = " << m_NumOfSecondHiddenNodes << std::endl;
  os << indent << "m_NumOfOutputNodes = " << m_NumOfOutputNodes << std::endl;
  os << indent << "m_FirstHiddenLayerBias = " << m_FirstHiddenLayerBias << std::endl;
  os << indent << "m_OutputLayerBias = " << m_OutputLayerBias << std::endl;
  os << indent << "m_InputFunction = " << m_InputFunction << std::endl;
  os << indent << "m_InputTransferFunction = " << m_InputTransferFunction << std::endl;
  os << indent << "m_FirstHiddenTransferFunction = " << m_FirstHiddenTransferFunction << std::endl;
  os << indent << "m_OutputTransferFunction = " << m_OutputTransferFunction << std::endl;
  Superclass::PrintSelf( os, indent );
}
} // end namespace Statistics
} // end namespace itk
#endif
 |