File: itkCovarianceCalculator.h

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (118 lines) | stat: -rw-r--r-- 4,098 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkCovarianceCalculator.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkCovarianceCalculator_h
#define __itkCovarianceCalculator_h

#include "itkSampleAlgorithmBase.h"

#include "itkArray.h"
#include "itkVariableSizeMatrix.h"

namespace itk { 
namespace Statistics {
  
/** \class CovarianceCalculator
 * \brief Calculates the covariance matrix of the target sample data.
 *
 * If there is a mean vector provided by the SetMean method, this
 * calculator will do the caculation as follows:
 * Let \f$\Sigma\f$ denotes covariance matrix for the sample, then:
 * When \f$x_{i}\f$ is \f$i\f$th component of a measurement vector 
 * \f$\vec x\f$, \f$\mu_{i}\f$ is the \f$i\f$th componet of the \f$\vec\mu\f$, 
 * and the \f$\sigma_{ij}\f$ is the \f$ij\f$th componet \f$\Sigma\f$,
 * \f$\sigma_{ij} = (x_{i} - \mu_{i})(x_{j} - \mu_{j})\f$ 
 *
 * Without the plugged in mean vector, this calculator will perform
 * the single pass mean and covariance calculation algorithm.  
 * 
 * Recent API changes:
 * The static const macro to get the length of a measurement vector,
 * 'MeasurementVectorSize'  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained from the input sample.
 * Please use the function GetMeasurementVectorSize() to obtain the length. 
 * The mean output is an Array rather than a Vector. The covariance matrix is 
 * represented by a VariableSizeMatrix rather than a Matrix.
 */

template< class TSample >
class CovarianceCalculator :
    public SampleAlgorithmBase< TSample >
{
public:
  /** Standard class typedefs. */
  typedef CovarianceCalculator           Self;
  typedef SampleAlgorithmBase< TSample > Superclass;
  typedef SmartPointer<Self>             Pointer;
  typedef SmartPointer<const Self>       ConstPointer;

  /** Standard Macros */
  itkTypeMacro(CovarianceCalculator, SampleAlgorithmBase);
  itkNewMacro(Self);
  
  /** Length of a measurement vector */
  typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;

  /** Measurement vector type */
  typedef typename Superclass::MeasurementVectorType MeasurementVectorType;
  
  /** Typedef for the mean output */
  typedef Array< double >                            MeanType;

  /** Typedef for Covariance output */
  typedef VariableSizeMatrix< double >               OutputType;

  /** Stores the sample pointer */
  void SetMean( MeanType* mean );

  /** Returns the sample pointer */
  MeanType* GetMean( void );

  /** Returns the covariance matrix of the target sample data */ 
  const OutputType * GetOutput( void ) const;

protected:
  CovarianceCalculator();
  virtual ~CovarianceCalculator();
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Calculates the covariance and save it. This method calls 
   * ComputeCovarianceWithGivenMean, if the user provides mean vector
   * using SetMean method. Otherwise, it calls
   * ComputeCovarianceWithoutGivenMethod depending on */
  void GenerateData( void );

  /** Calculates the covariance matrix using the given mean */ 
  void ComputeCovarianceWithGivenMean( void );

  /** Calculates the covariance matrix and the mean in a single pass */ 
  void ComputeCovarianceWithoutGivenMean( void );

private:
  MeanType*  m_Mean;
  MeanType*  m_InternalMean;
  OutputType m_Output;
}; // end of class
    
} // end of namespace Statistics 
} // end of namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCovarianceCalculator.txx"
#endif

#endif