File: itkGaussianDensityFunction.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (174 lines) | stat: -rw-r--r-- 4,789 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianDensityFunction.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianDensityFunction_txx
#define __itkGaussianDensityFunction_txx

#include "itkGaussianDensityFunction.h"

namespace itk { 
namespace Statistics {

template < class TMeasurementVector >
GaussianDensityFunction< TMeasurementVector >
::GaussianDensityFunction()
{
  m_Mean = 0;
  m_Covariance = 0;
  m_PreFactor = 0.0;
}

template < class TMeasurementVector >
void  
GaussianDensityFunction< TMeasurementVector >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "Mean: ";
  if ( m_Mean != 0 )
    {
    os << (*m_Mean) << std::endl;
    }
  else
    {
    os << " not set." << std::endl;
    }
  
  os << indent << "Covariance: " << std::endl;
  if ( m_Covariance != 0 )
    {
    os << m_Covariance->GetVnlMatrix();
    os << indent << "InverseCovariance: " << std::endl;
    os << indent << m_InverseCovariance.GetVnlMatrix();
    os << indent << "Prefactor: " << m_PreFactor << std::endl;
    }
  os << indent << " not set." << std::endl;
}

template < class TMeasurementVector >
void 
GaussianDensityFunction< TMeasurementVector >
::SetCovariance(const CovarianceType* cov)
{
  // Sanity check
  if( cov->GetVnlMatrix().rows() != cov->GetVnlMatrix().cols() )
    {
    itkExceptionMacro( << "Covariance matrix must be square" );
    }
  if( this->GetMeasurementVectorSize() )
    {
    if( cov->GetVnlMatrix().rows() != this->GetMeasurementVectorSize() )
      {
      itkExceptionMacro( << "Length of measurement vectors in the sample must be"
         << " the same as the size of the covariance." );
      }
    }
  else
    {
    this->SetMeasurementVectorSize( cov->GetVnlMatrix().rows() );
    }

  m_Covariance = cov;

  m_IsCovarianceZero = m_Covariance->GetVnlMatrix().is_zero();

  if ( !m_IsCovarianceZero )
    {
    // allocate the memory for m_InverseCovariance matrix   
    m_InverseCovariance.GetVnlMatrix() = 
      vnl_matrix_inverse< double >(m_Covariance->GetVnlMatrix());
      
    // the determinant of the covaraince matrix
    double det = vnl_determinant(m_Covariance->GetVnlMatrix());
      
    // calculate coefficient C of multivariate gaussian
    m_PreFactor = 1.0 / (vcl_sqrt(det) * 
                         vcl_pow(vcl_sqrt(2.0 * vnl_math::pi), double(this->GetMeasurementVectorSize())));
    }
}

template < class TMeasurementVector >
const typename GaussianDensityFunction< TMeasurementVector >::CovarianceType*
GaussianDensityFunction< TMeasurementVector >
::GetCovariance() const
{
  return m_Covariance;
}

template < class TMeasurementVector >
inline double
GaussianDensityFunction< TMeasurementVector >
::Evaluate(const MeasurementVectorType &measurement) const
{ 

  double temp;

  const MeasurementVectorSizeType measurementVectorSize = 
                          this->GetMeasurementVectorSize();
  MeanType tempVector;
  MeasurementVectorTraits::SetLength( tempVector, measurementVectorSize );
  MeanType tempVector2;
  MeasurementVectorTraits::SetLength( tempVector2, measurementVectorSize );

  if ( !m_IsCovarianceZero )
    {
    // Compute |y - mean | 
    for ( unsigned int i = 0; i < measurementVectorSize; i++)
      {
      tempVector[i] = measurement[i] - (*m_Mean)[i];
      }
      
      
    // Compute |y - mean | * inverse(cov) 
    for (unsigned int i = 0; i < measurementVectorSize; i++)
      {
      temp = 0;
      for (unsigned int j = 0; j < measurementVectorSize; j++)
        {
        temp += tempVector[j] * m_InverseCovariance.GetVnlMatrix().get(j, i);
        }
      tempVector2[i] = temp;
      }


    // Compute |y - mean | * inverse(cov) * |y - mean|^T 
    temp = 0;
    for (unsigned int i = 0; i < measurementVectorSize; i++)
      {
      temp += tempVector2[i] * tempVector[i];
      }
      
    return  m_PreFactor * vcl_exp(-0.5 * temp );
    }
  else
    {
    for ( unsigned int i = 0; i < measurementVectorSize; i++)
      {
      if ( (*m_Mean)[i] != (double) measurement[i] )
        {
        return 0;
        }
      }
    return NumericTraits< double >::max();
    }
}
  

} // end namespace Statistics
} // end of namespace itk

#endif