1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator_txx
#define __itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator_txx
#include "itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.h"
#include "itkNumericTraits.h"
#include "vnl/vnl_math.h"
namespace itk {
namespace Statistics {
template< class THistogram >
void
GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< THistogram >::
Compute( void )
{
typedef typename HistogramType::Iterator HistogramIterator;
// First, normalize the histogram if it doesn't look normalized.
// This is one pass through the histogram.
FrequencyType totalFrequency = m_Histogram->GetTotalFrequency();
if ( (totalFrequency - NumericTraits<MeasurementType>::One) > 0.0001 )
{
// Doesn't look normalized:
this->NormalizeHistogram();
}
// Now get the various means and variances. This is takes two passes
// through the histogram.
double pixelMean, marginalMean, marginalDevSquared, pixelVariance;
this->ComputeMeansAndVariances(pixelMean, marginalMean, marginalDevSquared,
pixelVariance);
// Finally compute the texture features. Another one pass.
m_Energy = m_Entropy = m_Correlation = m_InverseDifferenceMoment =
m_Inertia = m_ClusterShade = m_ClusterProminence = m_HaralickCorrelation = 0;
double pixelVarianceSquared = pixelVariance * pixelVariance;
double log2 = vcl_log(2.);
for (HistogramIterator hit = m_Histogram->Begin();
hit != m_Histogram->End(); ++hit)
{
MeasurementType frequency = hit.GetFrequency();
if (frequency == 0)
{
continue; // no use doing these calculations if we're just multiplying by zero.
}
IndexType index = m_Histogram->GetIndex(hit.GetInstanceIdentifier());
m_Energy += frequency * frequency;
m_Entropy -= (frequency > 0.0001) ? frequency * vcl_log(frequency) / log2 : 0;
m_Correlation += ( (index[0] - pixelMean) * (index[1] - pixelMean) * frequency)
/ pixelVarianceSquared;
m_InverseDifferenceMoment += frequency /
(1.0 + (index[0] - index[1]) * (index[0] - index[1]) );
m_Inertia += (index[0] - index[1]) * (index[0] - index[1]) * frequency;
m_ClusterShade += vcl_pow((index[0] - pixelMean) + (index[1] - pixelMean), 3) *
frequency;
m_ClusterProminence += vcl_pow((index[0] - pixelMean) + (index[1] - pixelMean), 4) *
frequency;
m_HaralickCorrelation += index[0] * index[1] * frequency;
}
m_HaralickCorrelation = (m_HaralickCorrelation - marginalMean * marginalMean) /
marginalDevSquared;
}
template< class THistogram >
void
GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< THistogram >::
NormalizeHistogram( void )
{
typename HistogramType::Iterator hit;
typename HistogramType::FrequencyType totalFrequency =
m_Histogram->GetTotalFrequency();
for (hit = m_Histogram->Begin(); hit != m_Histogram->End(); ++hit)
{
hit.SetFrequency(hit.GetFrequency() / totalFrequency);
}
}
template< class THistogram >
void
GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< THistogram >::
ComputeMeansAndVariances( double &pixelMean, double &marginalMean,
double &marginalDevSquared, double &pixelVariance )
{
// This function takes two passes through the histogram and two passes through
// an array of the same length as a histogram axis. This could probably be
// cleverly compressed to one pass, but it's not clear that that's necessary.
typedef typename HistogramType::Iterator HistogramIterator;
// Initialize everything
typename HistogramType::SizeValueType binsPerAxis = m_Histogram->GetSize(0);
double *marginalSums = new double[binsPerAxis];
for (double *ms_It = marginalSums;
ms_It < marginalSums + binsPerAxis; ms_It++)
{
*ms_It = 0;
}
pixelMean = 0;
// Ok, now do the first pass through the histogram to get the marginal sums
// and compute the pixel mean
HistogramIterator hit;
for (hit = m_Histogram->Begin(); hit != m_Histogram->End(); ++hit)
{
MeasurementType frequency = hit.GetFrequency();
IndexType index = m_Histogram->GetIndex(hit.GetInstanceIdentifier());
pixelMean += index[0] * frequency;
marginalSums[index[0]] += frequency;
}
/* Now get the mean and deviaton of the marginal sums.
Compute incremental mean and SD, a la Knuth, "The Art of Computer
Programming, Volume 2: Seminumerical Algorithms", section 4.2.2.
Compute mean and standard deviation using the recurrence relation:
M(1) = x(1), M(k) = M(k-1) + (x(k) - M(k-1) ) / k
S(1) = 0, S(k) = S(k-1) + (x(k) - M(k-1)) * (x(k) - M(k))
for 2 <= k <= n, then
sigma = vcl_sqrt(S(n) / n) (or divide by n-1 for sample SD instead of
population SD).
*/
marginalMean = marginalSums[0];
marginalDevSquared = 0;
for (unsigned int arrayIndex = 1; arrayIndex < binsPerAxis; arrayIndex++)
{
int k = arrayIndex + 1;
double M_k_minus_1 = marginalMean;
double S_k_minus_1 = marginalDevSquared;
double x_k = marginalSums[arrayIndex];
double M_k = M_k_minus_1 + (x_k - M_k_minus_1) / k;
double S_k = S_k_minus_1 + (x_k - M_k_minus_1) * (x_k - M_k);
marginalMean = M_k;
marginalDevSquared = S_k;
}
marginalDevSquared = marginalDevSquared / binsPerAxis;
// OK, now compute the pixel variances.
pixelVariance = 0;
for (hit = m_Histogram->Begin(); hit != m_Histogram->End(); ++hit)
{
MeasurementType frequency = hit.GetFrequency();
IndexType index = m_Histogram->GetIndex(hit.GetInstanceIdentifier());
pixelVariance += (index[0] - pixelMean) * (index[0] - pixelMean) * frequency;
}
delete [] marginalSums;
}
template< class THistogram >
double
GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< THistogram >::
GetFeature(TextureFeatureName feature)
{
switch(feature)
{
case Energy:
return this->GetEnergy();
case Entropy:
return this->GetEntropy();
case Correlation:
return this->GetCorrelation();
case InverseDifferenceMoment:
return this->GetInverseDifferenceMoment();
case Inertia:
return this->GetInertia();
case ClusterShade:
return this->GetClusterShade();
case ClusterProminence:
return this->GetClusterProminence();
case HaralickCorrelation:
return this->GetHaralickCorrelation();
default:
return 0;
}
}
template< class THistogram >
void
GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< THistogram >::
PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|