File: itkScalarImageTextureCalculator.h

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (208 lines) | stat: -rw-r--r-- 8,990 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkScalarImageTextureCalculator.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkScalarImageTextureCalculator_h
#define __itkScalarImageTextureCalculator_h

#include "itkImage.h"
#include "itkObject.h"
#include "itkVectorContainer.h"
#include "itkMacro.h"

#include "itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.h"
#include "itkMaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator.h"

namespace itk {
namespace Statistics {

/** \class ScalarImageTextureCalculator 
 *  \brief This class computes texture descriptions from an image.
 *
 * This class computes features that summarize the texture of a given image.
 * The texture features are compute a la Haralick, and have proven to be useful
 * in image classification for biological and medical imaging.
 * This class computes the texture features of an image (optionally in a masked
 * masked region), averaged across several spatial directions so that they are 
 * invariant to rotation. 
 *
 * By default, texure features are computed for each spatial
 * direction and then averaged afterward, so it is possible to access the standard
 * deviations of the texture features. These values give a clue as to texture 
 * anisotropy. However, doing this is much more work, because it involved computing
 * one GLCM for each offset given. To compute a single GLCM for all of the offsets,
 * call FastCalculationsOn(). If this is called, then the texture standard deviations
 * will not be computed (and will be set to zero), but texture computation will
 * be much faster.
 *
 * This class is templated over the input image type.
 *
 * Template Parameters:
 * The image type, and the type of histogram frequency container. If you are using
 * a large number of bins per axis, a sparse frequency container may be advisable.
 * The default is to use a dense frequency container.
 *
 * Inputs and parameters:
 * -# An image
 * -# A mask defining the region over which texture features will be
 *    calculated. (Optional)
 * -# The pixel value that defines the "inside" of the mask. (Optional, defaults
 *    to 1 if a mask is set.)
 * -# The set of features to be calculated. These features are defined
 *    in the GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator class. (Optional,
 *    defaults to {Energy, Entropy, InverseDifferenceMoment, Inertia, ClusterShade, 
 *    ClusterProminence}, as in Conners, Trivedi and Harlow.)
 * -# The number of intensity bins. (Optional, defaults to 256.)
 * -# The set of directions (offsets) to average across. (Optional, defaults to
 *    {(-1, 0), (-1, -1), (0, -1), (1, -1)} for 2D images and scales analogously for ND 
 *    images.)
 * -# The pixel intensity range over which the features will be calculated.
 *    (Optional, defaults to the full dynamic range of the pixel type.)
 * 
 * In general, the default parameter values should be sufficient.
 *
 * Outputs:
 * (1) The average value of each feature.
 * (2) The standard deviation in the values of each feature.
 * 
 * Web references:
 * http://www.cssip.uq.edu.au/meastex/www/algs/algs/algs.html
 * http://www.ucalgary.ca/~mhallbey/texture/texture_tutorial.html
 *
 * Print references:
 * Haralick, R.M., K. Shanmugam and I. Dinstein. 1973.  Textural Features for 
 * Image Classification. IEEE Transactions on Systems, Man and Cybernetics. 
 * SMC-3(6):610-620.
 *
 * Haralick, R.M. 1979. Statistical and Structural Approaches to Texture. 
 * Proceedings of the IEEE, 67:786-804.
 *
 * R.W. Conners and C.A. Harlow. A Theoretical Comaprison of Texture Algorithms. 
 * IEEE Transactions on Pattern Analysis and Machine Intelligence,  2:204-222, 1980.
 *
 * R.W. Conners, M.M. Trivedi, and C.A. Harlow. Segmentation of a High-Resolution
 * Urban Scene using Texture  Operators. Computer Vision, Graphics and Image 
 * Processing, 25:273-310,  1984.
 * 
 * \sa ScalarImageToGreyLevelCooccurrenceMatrixGenerator
 * \sa MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator
 * \sa GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator
 *
 * Author: Zachary Pincus
 */
    
template< class TImageType,
          class THistogramFrequencyContainer = DenseFrequencyContainer >
class ScalarImageTextureCalculator : public Object
{
public:
  /** Standard typedefs */
  typedef ScalarImageTextureCalculator Self;
  typedef Object                       Superclass;
  typedef SmartPointer<Self>           Pointer;
  typedef SmartPointer<const Self>     ConstPointer;
      
  /** Run-time type information (and related methods). */
  itkTypeMacro(ScalarImageTextureCalculator, Object);
      
  /** standard New() method support */
  itkNewMacro(Self);
  
  typedef THistogramFrequencyContainer                FrequencyContainerType;
  typedef TImageType                                  ImageType;
  typedef typename ImageType::Pointer                 ImagePointer;
      
  typedef typename ImageType::PixelType               PixelType;
  typedef typename ImageType::OffsetType              OffsetType;
  typedef VectorContainer<unsigned char, OffsetType>  OffsetVector;
  typedef typename OffsetVector::Pointer              OffsetVectorPointer;
  typedef typename OffsetVector::ConstPointer         OffsetVectorConstPointer;

  typedef MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator< ImageType,
    FrequencyContainerType > GLCMGeneratorType;
  typedef GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< typename
  GLCMGeneratorType::HistogramType >                GLCMCalculatorType;
      
  typedef VectorContainer<unsigned char, TextureFeatureName> FeatureNameVector;
  typedef typename FeatureNameVector::Pointer         FeatureNameVectorPointer;
  typedef typename FeatureNameVector::ConstPointer    FeatureNameVectorConstPointer;
  typedef VectorContainer<unsigned char, double>      FeatureValueVector;
  typedef typename FeatureValueVector::Pointer        FeatureValueVectorPointer;
     
  /** Triggers the computation of the features */
  void Compute( void );
      
  /** Connects the input image for which the features are going to be computed */
  void SetInput( const ImageType * );
      
  /** Return the feature means and deviations.
      \warning This output is only valid after the Compute() method has been invoked 
      \sa Compute */
  itkGetObjectMacro(FeatureMeans, FeatureValueVector);
  itkGetObjectMacro(FeatureStandardDeviations, FeatureValueVector);
      
  /** Set the desired feature set. Optional, for default value see above. */
  itkSetConstObjectMacro(RequestedFeatures, FeatureNameVector);
  itkGetConstObjectMacro(RequestedFeatures, FeatureNameVector);

  /** Set the  offsets over which the co-occurrence pairs will be computed.
      Optional; for default value see above. */
  itkSetConstObjectMacro(Offsets, OffsetVector);
  itkGetConstObjectMacro(Offsets, OffsetVector);
      
  /** Set number of histogram bins along each axis. 
      Optional; for default value see above. */
  void SetNumberOfBinsPerAxis( unsigned int );
      
  /** Set the min and max (inclusive) pixel value that will be used for
      feature calculations. Optional; for default value see above. */
  void SetPixelValueMinMax( PixelType min, PixelType max );
      
  /** Connects the mask image for which the histogram is going to be computed.
      Optional; for default value see above. */
  void SetImageMask(const ImageType * );
      
  /** Set the pixel value of the mask that should be considered "inside" the 
      object. Optional; for default value see above. */
  void SetInsidePixelValue(PixelType InsidePixelValue);

  itkGetMacro(FastCalculations, bool);
  itkSetMacro(FastCalculations, bool);
  itkBooleanMacro(FastCalculations);
      
protected:
  ScalarImageTextureCalculator();
  virtual ~ScalarImageTextureCalculator() {};
  void PrintSelf(std::ostream& os, Indent indent) const;
  void FastCompute();
  void FullCompute();
      
private:
  typename GLCMGeneratorType::Pointer m_GLCMGenerator;
  FeatureValueVectorPointer           m_FeatureMeans;
  FeatureValueVectorPointer           m_FeatureStandardDeviations;
  FeatureNameVectorConstPointer       m_RequestedFeatures;
  OffsetVectorConstPointer            m_Offsets;
  bool                                m_FastCalculations;
};
    
} // end of namespace Statistics 
} // end of namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageTextureCalculator.txx"
#endif

#endif