1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkScalarImageTextureCalculator.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkScalarImageTextureCalculator_h
#define __itkScalarImageTextureCalculator_h
#include "itkImage.h"
#include "itkObject.h"
#include "itkVectorContainer.h"
#include "itkMacro.h"
#include "itkGreyLevelCooccurrenceMatrixTextureCoefficientsCalculator.h"
#include "itkMaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator.h"
namespace itk {
namespace Statistics {
/** \class ScalarImageTextureCalculator
* \brief This class computes texture descriptions from an image.
*
* This class computes features that summarize the texture of a given image.
* The texture features are compute a la Haralick, and have proven to be useful
* in image classification for biological and medical imaging.
* This class computes the texture features of an image (optionally in a masked
* masked region), averaged across several spatial directions so that they are
* invariant to rotation.
*
* By default, texure features are computed for each spatial
* direction and then averaged afterward, so it is possible to access the standard
* deviations of the texture features. These values give a clue as to texture
* anisotropy. However, doing this is much more work, because it involved computing
* one GLCM for each offset given. To compute a single GLCM for all of the offsets,
* call FastCalculationsOn(). If this is called, then the texture standard deviations
* will not be computed (and will be set to zero), but texture computation will
* be much faster.
*
* This class is templated over the input image type.
*
* Template Parameters:
* The image type, and the type of histogram frequency container. If you are using
* a large number of bins per axis, a sparse frequency container may be advisable.
* The default is to use a dense frequency container.
*
* Inputs and parameters:
* -# An image
* -# A mask defining the region over which texture features will be
* calculated. (Optional)
* -# The pixel value that defines the "inside" of the mask. (Optional, defaults
* to 1 if a mask is set.)
* -# The set of features to be calculated. These features are defined
* in the GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator class. (Optional,
* defaults to {Energy, Entropy, InverseDifferenceMoment, Inertia, ClusterShade,
* ClusterProminence}, as in Conners, Trivedi and Harlow.)
* -# The number of intensity bins. (Optional, defaults to 256.)
* -# The set of directions (offsets) to average across. (Optional, defaults to
* {(-1, 0), (-1, -1), (0, -1), (1, -1)} for 2D images and scales analogously for ND
* images.)
* -# The pixel intensity range over which the features will be calculated.
* (Optional, defaults to the full dynamic range of the pixel type.)
*
* In general, the default parameter values should be sufficient.
*
* Outputs:
* (1) The average value of each feature.
* (2) The standard deviation in the values of each feature.
*
* Web references:
* http://www.cssip.uq.edu.au/meastex/www/algs/algs/algs.html
* http://www.ucalgary.ca/~mhallbey/texture/texture_tutorial.html
*
* Print references:
* Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for
* Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
* SMC-3(6):610-620.
*
* Haralick, R.M. 1979. Statistical and Structural Approaches to Texture.
* Proceedings of the IEEE, 67:786-804.
*
* R.W. Conners and C.A. Harlow. A Theoretical Comaprison of Texture Algorithms.
* IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:204-222, 1980.
*
* R.W. Conners, M.M. Trivedi, and C.A. Harlow. Segmentation of a High-Resolution
* Urban Scene using Texture Operators. Computer Vision, Graphics and Image
* Processing, 25:273-310, 1984.
*
* \sa ScalarImageToGreyLevelCooccurrenceMatrixGenerator
* \sa MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator
* \sa GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator
*
* Author: Zachary Pincus
*/
template< class TImageType,
class THistogramFrequencyContainer = DenseFrequencyContainer >
class ScalarImageTextureCalculator : public Object
{
public:
/** Standard typedefs */
typedef ScalarImageTextureCalculator Self;
typedef Object Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(ScalarImageTextureCalculator, Object);
/** standard New() method support */
itkNewMacro(Self);
typedef THistogramFrequencyContainer FrequencyContainerType;
typedef TImageType ImageType;
typedef typename ImageType::Pointer ImagePointer;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::OffsetType OffsetType;
typedef VectorContainer<unsigned char, OffsetType> OffsetVector;
typedef typename OffsetVector::Pointer OffsetVectorPointer;
typedef typename OffsetVector::ConstPointer OffsetVectorConstPointer;
typedef MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator< ImageType,
FrequencyContainerType > GLCMGeneratorType;
typedef GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator< typename
GLCMGeneratorType::HistogramType > GLCMCalculatorType;
typedef VectorContainer<unsigned char, TextureFeatureName> FeatureNameVector;
typedef typename FeatureNameVector::Pointer FeatureNameVectorPointer;
typedef typename FeatureNameVector::ConstPointer FeatureNameVectorConstPointer;
typedef VectorContainer<unsigned char, double> FeatureValueVector;
typedef typename FeatureValueVector::Pointer FeatureValueVectorPointer;
/** Triggers the computation of the features */
void Compute( void );
/** Connects the input image for which the features are going to be computed */
void SetInput( const ImageType * );
/** Return the feature means and deviations.
\warning This output is only valid after the Compute() method has been invoked
\sa Compute */
itkGetObjectMacro(FeatureMeans, FeatureValueVector);
itkGetObjectMacro(FeatureStandardDeviations, FeatureValueVector);
/** Set the desired feature set. Optional, for default value see above. */
itkSetConstObjectMacro(RequestedFeatures, FeatureNameVector);
itkGetConstObjectMacro(RequestedFeatures, FeatureNameVector);
/** Set the offsets over which the co-occurrence pairs will be computed.
Optional; for default value see above. */
itkSetConstObjectMacro(Offsets, OffsetVector);
itkGetConstObjectMacro(Offsets, OffsetVector);
/** Set number of histogram bins along each axis.
Optional; for default value see above. */
void SetNumberOfBinsPerAxis( unsigned int );
/** Set the min and max (inclusive) pixel value that will be used for
feature calculations. Optional; for default value see above. */
void SetPixelValueMinMax( PixelType min, PixelType max );
/** Connects the mask image for which the histogram is going to be computed.
Optional; for default value see above. */
void SetImageMask(const ImageType * );
/** Set the pixel value of the mask that should be considered "inside" the
object. Optional; for default value see above. */
void SetInsidePixelValue(PixelType InsidePixelValue);
itkGetMacro(FastCalculations, bool);
itkSetMacro(FastCalculations, bool);
itkBooleanMacro(FastCalculations);
protected:
ScalarImageTextureCalculator();
virtual ~ScalarImageTextureCalculator() {};
void PrintSelf(std::ostream& os, Indent indent) const;
void FastCompute();
void FullCompute();
private:
typename GLCMGeneratorType::Pointer m_GLCMGenerator;
FeatureValueVectorPointer m_FeatureMeans;
FeatureValueVectorPointer m_FeatureStandardDeviations;
FeatureNameVectorConstPointer m_RequestedFeatures;
OffsetVectorConstPointer m_Offsets;
bool m_FastCalculations;
};
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageTextureCalculator.txx"
#endif
#endif
|