1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkSimpleFuzzyConnectednessRGBImageFilter.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkSimpleFuzzyConnectednessRGBImageFilter_h
#define __itkSimpleFuzzyConnectednessRGBImageFilter_h
#include "itkImage.h"
#include "itkImageToImageFilter.h"
#include "itkSimpleFuzzyConnectednessImageFilterBase.h"
#include <vnl/vnl_matrix_fixed.h>
#include <queue>
namespace itk {
/** \class SimpleFuzzyConnectednessRGBImageFilter
* \brief Perform segmentation on RGB images using method of fuzzy connectedness.
*
* Perform the segmentation for three channels (RGB) image
* via thresholding of a fuzzy connectedness scene.
* Used as a node of the segmentation toolkit.
* Fuzzy affinity is defined between two neighboor pixels, to reflect
* their similarity and assign a probability that these two pixels belong to the
* same object. A "path" between two pixels is a list of pixels that connect
* them, the strength of a particular path is defined as the weakest affinity
* between the neighboor pixels that form the path. The fuzzy connectedness
* between two pixels is defined as the strongest path strength between these
* two pixels. The segmentation based on fuzzy connectedness assumes that
* the fuzzy connectedness between any two pixels from a single object
* is significantly higher than those for pixels belonging to different objects.
* A fuzzy connectedness scene is first computed for a set of input seed
* points selected inside the object of interest. A threshold is then
* applied to the fuzzy scene to extract the binary segmented object.
* The fuzzy affinity here was defined as a gaussian function of the pixel difference
* and the difference of the estimated object mean and the mean of the two input
* pixels (in a vectorial fashion).
*
* Usage:
*
* 1. use SetInput to import the input image object
* 2. use SetParameter, SetSeed, SetThreshold to set the parameters
* 3. run ExcuteSegment to perform the segmenation
* 4. threshold can be set after the segmentation, and no computation
* will be redo. no need to run GenerateData. But if SetThreshold was used.
* MakeSegmentObject() should be called to get the updated result.
* 5. use GetOutput to obtain the resulted binary image Object.
* 6. GetFuzzyScene gives the pointer of Image<unsigned short> for the
* fuzzy scene.
*
* Input Parameters are:
* (1) Input image in the form itkImage<itkVector<Pixeltype,3>,Dimension>
* (2) Seed points
* (3) Threshold value.
*
* The fuzzy scene can also be extracted with the GetFuzzyScene method.
*
* Detailed information about this algorithm can be found in:
* "Fuzzy Connectedness and Object Definition: Theory, Algorithms,
* and Applications in Image Segmentation", J. Udupa and S. Samarasekera
* Graphical Models and Image Processing, Vol.58, No.3. pp 246-261, 1996.
*
*
* \ingroup FuzzyConnectednessSegmentation */
template <class TInputImage, class TOutputImage>
class ITK_EXPORT SimpleFuzzyConnectednessRGBImageFilter:
public SimpleFuzzyConnectednessImageFilterBase<TInputImage,TOutputImage>
{
public:
/** Standard class typedefs. */
typedef SimpleFuzzyConnectednessRGBImageFilter Self;
typedef SimpleFuzzyConnectednessImageFilterBase<TInputImage,TOutputImage>
Superclass;
typedef SmartPointer <Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(SimpleFuzzyConnectednessRGBImageFilter,
SimpleFuzzyConnectednessImageFilterBase);
/** The pixel type. */
typedef typename TInputImage::PixelType PixelType;
/** Setting and getting the segmentation parameters. */
itkSetVectorMacro(Mean,double,3);
void GetMean(double omean[3])
{
omean[0]=m_Mean[0];omean[1]=m_Mean[1];omean[2]=m_Mean[2];
}
void SetVariance(double ivar[3][3])
{
m_Variance[0][0]=ivar[0][0];m_Variance[0][1]=ivar[0][1];m_Variance[0][2]=ivar[0][2];
m_Variance[1][0]=ivar[1][0];m_Variance[1][1]=ivar[1][1];m_Variance[1][2]=ivar[1][2];
m_Variance[2][0]=ivar[2][0];m_Variance[2][1]=ivar[2][2];m_Variance[2][2]=ivar[2][2];
}
void GetVariance(double ovar[3][3])
{
ovar[0][0]=m_Variance[0][0];ovar[0][1]=m_Variance[0][1];ovar[0][2]=m_Variance[0][2];
ovar[1][0]=m_Variance[1][0];ovar[1][1]=m_Variance[1][1];ovar[1][2]=m_Variance[1][2];
ovar[2][0]=m_Variance[2][0];ovar[2][1]=m_Variance[2][1];ovar[2][2]=m_Variance[2][2];
}
itkSetVectorMacro(Diff_Mean,double,3);
void GetDiff_Mean(double odmean[3])
{
odmean[0]=m_Diff_Mean[0];odmean[1]=m_Diff_Mean[1];odmean[2]=m_Diff_Mean[2];
}
void SetDiff_Variance(double idvar[3][3])
{
m_Diff_Variance[0][0]=idvar[0][0];m_Diff_Variance[0][1]=idvar[0][1];m_Diff_Variance[0][2]=idvar[0][2];
m_Diff_Variance[1][0]=idvar[1][0];m_Diff_Variance[1][1]=idvar[1][1];m_Diff_Variance[1][2]=idvar[1][2];
m_Diff_Variance[2][0]=idvar[2][0];m_Diff_Variance[2][1]=idvar[2][1];m_Diff_Variance[2][2]=idvar[2][2];
}
void GetDiff_Variance(double odvar[3][3])
{
odvar[0][0]=m_Diff_Variance[0][0];odvar[0][1]=m_Diff_Variance[0][1];odvar[0][2]=m_Diff_Variance[0][2];
odvar[1][0]=m_Diff_Variance[1][0];odvar[1][1]=m_Diff_Variance[1][1];odvar[1][2]=m_Diff_Variance[1][2];
odvar[2][0]=m_Diff_Variance[2][0];odvar[2][1]=m_Diff_Variance[2][1];odvar[2][2]=m_Diff_Variance[2][2];
}
protected:
SimpleFuzzyConnectednessRGBImageFilter();
~SimpleFuzzyConnectednessRGBImageFilter();
virtual void PrintSelf(std::ostream& os, Indent indent) const;
void GenerateData(void);
private:
SimpleFuzzyConnectednessRGBImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
double m_Mean[3];
double m_Variance[3][3];
double m_Diff_Mean[3];
double m_Diff_Variance[3][3];
double m_VarianceInverse[3][3];
double m_Diff_VarianceInverse[3][3];
double m_VarianceDet;
double m_Diff_VarianceDet;
virtual double FuzzyAffinity(const PixelType f1, const PixelType f2);
};
} // end namespace itk.
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSimpleFuzzyConnectednessRGBImageFilter.txx"
#endif
#endif
|