File: itkSimpleFuzzyConnectednessRGBImageFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (178 lines) | stat: -rw-r--r-- 7,251 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkSimpleFuzzyConnectednessRGBImageFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkSimpleFuzzyConnectednessRGBImageFilter_txx
#define __itkSimpleFuzzyConnectednessRGBImageFilter_txx
#include "itkSimpleFuzzyConnectednessRGBImageFilter.h"

#include "vnl/vnl_math.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNumericTraits.h"

namespace itk {

template <class TInputImage, class TOutputImage>
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::SimpleFuzzyConnectednessRGBImageFilter()
{
}

template <class TInputImage, class TOutputImage>
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::~SimpleFuzzyConnectednessRGBImageFilter()
{
}


template <class TInputImage, class TOutputImage>
double 
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::FuzzyAffinity(const PixelType f1, const PixelType f2)
{
  double save[3];
  save[0] = 0.5 * (f1[0]+f2[0]) - m_Mean[0];
  save[1] = 0.5 * (f1[1]+f2[1]) - m_Mean[1];
  save[2] = 0.5 * (f1[2]+f2[2]) - m_Mean[2];

  double s00 = save[0]*save[0];
  double s01 = save[0]*save[1];
  double s02 = save[0]*save[2];
  double s11 = save[1]*save[1];
  double s12 = save[1]*save[2];
  double s22 = save[2]*save[2];

  double tmp1 = s00*(m_VarianceInverse[0][0])
    + s11*(m_VarianceInverse[1][1])
    + s22*(m_VarianceInverse[2][2])
    + s01*(m_VarianceInverse[0][1]+m_VarianceInverse[1][0])
    + s02*(m_VarianceInverse[0][2]+m_VarianceInverse[2][0])
    + s12*(m_VarianceInverse[1][2]+m_VarianceInverse[2][1]);

  if(this->GetWeight() == 1)
    {
    return( (NumericTraits<unsigned short>::max())*(vcl_exp(-0.5*tmp1)) );
    }
  else
    {
    save[0] = f1[0]-f2[0];
    save[1] = f1[1]-f2[1];
    save[2] = f1[2]-f2[2];
    if(save[0] < 0)
      save[0]=-save[0];
    if(save[1] < 0)
      save[1]=-save[1];
    if(save[2] < 0)
      save[2]=-save[2];
    save[0] = save[0] - m_Diff_Mean[0];
    save[1] = save[1] - m_Diff_Mean[1];
    save[2] = save[2] - m_Diff_Mean[2];

    s00 = save[0]*save[0];
    s01 = save[0]*save[1];
    s02 = save[0]*save[2];
    s11 = save[1]*save[1];
    s12 = save[1]*save[2];
    s22 = save[2]*save[2];

    double tmp3 = s00*(m_Diff_VarianceInverse[0][0])
      + s11*(m_Diff_VarianceInverse[1][1])
      + s22*(m_Diff_VarianceInverse[2][2])
      + s01*(m_Diff_VarianceInverse[0][1]+m_Diff_VarianceInverse[1][0])
      + s02*(m_Diff_VarianceInverse[0][2]+m_Diff_VarianceInverse[2][0])
      + s12*(m_Diff_VarianceInverse[1][2]+m_Diff_VarianceInverse[2][1]);

    return( (NumericTraits<unsigned short>::max())*(this->GetWeight()*vcl_exp(-0.5*tmp1)  
                                                    +(1-this->GetWeight())*vcl_exp(-0.5*tmp3)) );
    }
}


template <class TInputImage, class TOutputImage>
void 
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::GenerateData()
{

/* Compute the inverse of the Varianceiance Matrices. */
  m_VarianceDet = m_Variance[0][0]*m_Variance[1][1]*m_Variance[2][2]
    +m_Variance[1][0]*m_Variance[2][1]*m_Variance[0][2]
    +m_Variance[0][1]*m_Variance[1][2]*m_Variance[2][0]
    -m_Variance[2][0]*m_Variance[1][1]*m_Variance[0][2]
    -m_Variance[0][1]*m_Variance[1][0]*m_Variance[2][2]
    -m_Variance[0][0]*m_Variance[1][2]*m_Variance[2][1];
  m_VarianceInverse[0][0]=(m_Variance[1][1]*m_Variance[2][2]-m_Variance[2][1]*m_Variance[1][2])
    /m_VarianceDet;  
  m_VarianceInverse[0][1]=-(m_Variance[1][0]*m_Variance[2][2]-m_Variance[2][0]*m_Variance[1][2])
    /m_VarianceDet;  
  m_VarianceInverse[0][2]=(m_Variance[1][0]*m_Variance[2][1]-m_Variance[2][0]*m_Variance[1][1])
    /m_VarianceDet;  
  m_VarianceInverse[1][0]=-(m_Variance[0][1]*m_Variance[2][2]-m_Variance[2][1]*m_Variance[0][2])
    /m_VarianceDet;  
  m_VarianceInverse[1][1]=(m_Variance[0][0]*m_Variance[2][2]-m_Variance[2][0]*m_Variance[0][2])
    /m_VarianceDet;  
  m_VarianceInverse[1][2]=-(m_Variance[0][0]*m_Variance[2][1]-m_Variance[2][0]*m_Variance[0][1])
    /m_VarianceDet;  
  m_VarianceInverse[2][0]=(m_Variance[0][1]*m_Variance[1][2]-m_Variance[1][1]*m_Variance[0][2])
    /m_VarianceDet;  
  m_VarianceInverse[2][1]=-(m_Variance[0][0]*m_Variance[1][2]-m_Variance[1][0]*m_Variance[0][2])
    /m_VarianceDet;  
  m_VarianceInverse[2][2]=(m_Variance[0][0]*m_Variance[1][1]-m_Variance[1][0]*m_Variance[0][1])
    /m_VarianceDet;  
  if((int)(this->GetWeight()*100+0.5) > 1)
    {
    //need to use the difference information.

    m_Diff_VarianceDet = m_Diff_Variance[0][0]*m_Diff_Variance[1][1]*m_Diff_Variance[2][2]
      +m_Diff_Variance[1][0]*m_Diff_Variance[2][1]*m_Diff_Variance[0][2]
      +m_Diff_Variance[0][1]*m_Diff_Variance[1][2]*m_Diff_Variance[2][0]
      -m_Diff_Variance[2][0]*m_Diff_Variance[1][1]*m_Diff_Variance[0][2]
      -m_Diff_Variance[0][1]*m_Diff_Variance[1][0]*m_Diff_Variance[2][2]
      -m_Diff_Variance[0][0]*m_Diff_Variance[1][2]*m_Diff_Variance[2][1];
    m_Diff_VarianceInverse[0][0]=(m_Diff_Variance[1][1]*m_Diff_Variance[2][2]-m_Diff_Variance[2][1]*m_Diff_Variance[1][2])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[0][1]=-(m_Diff_Variance[1][0]*m_Diff_Variance[2][2]-m_Diff_Variance[2][0]*m_Diff_Variance[1][2])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[0][2]=(m_Diff_Variance[1][0]*m_Diff_Variance[2][1]-m_Diff_Variance[2][0]*m_Diff_Variance[1][1])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[1][0]=-(m_Diff_Variance[0][1]*m_Diff_Variance[2][2]-m_Diff_Variance[2][1]*m_Diff_Variance[0][2])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[1][1]=(m_Diff_Variance[0][0]*m_Diff_Variance[2][2]-m_Diff_Variance[2][0]*m_Diff_Variance[0][2])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[1][2]=-(m_Diff_Variance[0][0]*m_Diff_Variance[2][1]-m_Diff_Variance[2][0]*m_Diff_Variance[0][1])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[2][0]=(m_Diff_Variance[0][1]*m_Diff_Variance[1][2]-m_Diff_Variance[1][1]*m_Diff_Variance[0][2])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[2][1]=-(m_Diff_Variance[0][0]*m_Diff_Variance[1][2]-m_Diff_Variance[1][0]*m_Diff_Variance[0][2])
      /m_Diff_VarianceDet;  
    m_Diff_VarianceInverse[2][2]=(m_Diff_Variance[0][0]*m_Diff_Variance[1][1]-m_Diff_Variance[1][0]*m_Diff_Variance[0][1])
      /m_Diff_VarianceDet;  
    }
  
  Superclass::GenerateData();
}

template <class TInputImage, class TOutputImage>
void
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Mean = " << m_Mean << std::endl;
  os << indent << "Diff_Mean = " << m_Diff_Mean << std::endl;
}
} /* end namespace itk. */

#endif