1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkSimpleFuzzyConnectednessRGBImageFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkSimpleFuzzyConnectednessRGBImageFilter_txx
#define __itkSimpleFuzzyConnectednessRGBImageFilter_txx
#include "itkSimpleFuzzyConnectednessRGBImageFilter.h"
#include "vnl/vnl_math.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNumericTraits.h"
namespace itk {
template <class TInputImage, class TOutputImage>
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::SimpleFuzzyConnectednessRGBImageFilter()
{
}
template <class TInputImage, class TOutputImage>
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::~SimpleFuzzyConnectednessRGBImageFilter()
{
}
template <class TInputImage, class TOutputImage>
double
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::FuzzyAffinity(const PixelType f1, const PixelType f2)
{
double save[3];
save[0] = 0.5 * (f1[0]+f2[0]) - m_Mean[0];
save[1] = 0.5 * (f1[1]+f2[1]) - m_Mean[1];
save[2] = 0.5 * (f1[2]+f2[2]) - m_Mean[2];
double s00 = save[0]*save[0];
double s01 = save[0]*save[1];
double s02 = save[0]*save[2];
double s11 = save[1]*save[1];
double s12 = save[1]*save[2];
double s22 = save[2]*save[2];
double tmp1 = s00*(m_VarianceInverse[0][0])
+ s11*(m_VarianceInverse[1][1])
+ s22*(m_VarianceInverse[2][2])
+ s01*(m_VarianceInverse[0][1]+m_VarianceInverse[1][0])
+ s02*(m_VarianceInverse[0][2]+m_VarianceInverse[2][0])
+ s12*(m_VarianceInverse[1][2]+m_VarianceInverse[2][1]);
if(this->GetWeight() == 1)
{
return( (NumericTraits<unsigned short>::max())*(vcl_exp(-0.5*tmp1)) );
}
else
{
save[0] = f1[0]-f2[0];
save[1] = f1[1]-f2[1];
save[2] = f1[2]-f2[2];
if(save[0] < 0)
save[0]=-save[0];
if(save[1] < 0)
save[1]=-save[1];
if(save[2] < 0)
save[2]=-save[2];
save[0] = save[0] - m_Diff_Mean[0];
save[1] = save[1] - m_Diff_Mean[1];
save[2] = save[2] - m_Diff_Mean[2];
s00 = save[0]*save[0];
s01 = save[0]*save[1];
s02 = save[0]*save[2];
s11 = save[1]*save[1];
s12 = save[1]*save[2];
s22 = save[2]*save[2];
double tmp3 = s00*(m_Diff_VarianceInverse[0][0])
+ s11*(m_Diff_VarianceInverse[1][1])
+ s22*(m_Diff_VarianceInverse[2][2])
+ s01*(m_Diff_VarianceInverse[0][1]+m_Diff_VarianceInverse[1][0])
+ s02*(m_Diff_VarianceInverse[0][2]+m_Diff_VarianceInverse[2][0])
+ s12*(m_Diff_VarianceInverse[1][2]+m_Diff_VarianceInverse[2][1]);
return( (NumericTraits<unsigned short>::max())*(this->GetWeight()*vcl_exp(-0.5*tmp1)
+(1-this->GetWeight())*vcl_exp(-0.5*tmp3)) );
}
}
template <class TInputImage, class TOutputImage>
void
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::GenerateData()
{
/* Compute the inverse of the Varianceiance Matrices. */
m_VarianceDet = m_Variance[0][0]*m_Variance[1][1]*m_Variance[2][2]
+m_Variance[1][0]*m_Variance[2][1]*m_Variance[0][2]
+m_Variance[0][1]*m_Variance[1][2]*m_Variance[2][0]
-m_Variance[2][0]*m_Variance[1][1]*m_Variance[0][2]
-m_Variance[0][1]*m_Variance[1][0]*m_Variance[2][2]
-m_Variance[0][0]*m_Variance[1][2]*m_Variance[2][1];
m_VarianceInverse[0][0]=(m_Variance[1][1]*m_Variance[2][2]-m_Variance[2][1]*m_Variance[1][2])
/m_VarianceDet;
m_VarianceInverse[0][1]=-(m_Variance[1][0]*m_Variance[2][2]-m_Variance[2][0]*m_Variance[1][2])
/m_VarianceDet;
m_VarianceInverse[0][2]=(m_Variance[1][0]*m_Variance[2][1]-m_Variance[2][0]*m_Variance[1][1])
/m_VarianceDet;
m_VarianceInverse[1][0]=-(m_Variance[0][1]*m_Variance[2][2]-m_Variance[2][1]*m_Variance[0][2])
/m_VarianceDet;
m_VarianceInverse[1][1]=(m_Variance[0][0]*m_Variance[2][2]-m_Variance[2][0]*m_Variance[0][2])
/m_VarianceDet;
m_VarianceInverse[1][2]=-(m_Variance[0][0]*m_Variance[2][1]-m_Variance[2][0]*m_Variance[0][1])
/m_VarianceDet;
m_VarianceInverse[2][0]=(m_Variance[0][1]*m_Variance[1][2]-m_Variance[1][1]*m_Variance[0][2])
/m_VarianceDet;
m_VarianceInverse[2][1]=-(m_Variance[0][0]*m_Variance[1][2]-m_Variance[1][0]*m_Variance[0][2])
/m_VarianceDet;
m_VarianceInverse[2][2]=(m_Variance[0][0]*m_Variance[1][1]-m_Variance[1][0]*m_Variance[0][1])
/m_VarianceDet;
if((int)(this->GetWeight()*100+0.5) > 1)
{
//need to use the difference information.
m_Diff_VarianceDet = m_Diff_Variance[0][0]*m_Diff_Variance[1][1]*m_Diff_Variance[2][2]
+m_Diff_Variance[1][0]*m_Diff_Variance[2][1]*m_Diff_Variance[0][2]
+m_Diff_Variance[0][1]*m_Diff_Variance[1][2]*m_Diff_Variance[2][0]
-m_Diff_Variance[2][0]*m_Diff_Variance[1][1]*m_Diff_Variance[0][2]
-m_Diff_Variance[0][1]*m_Diff_Variance[1][0]*m_Diff_Variance[2][2]
-m_Diff_Variance[0][0]*m_Diff_Variance[1][2]*m_Diff_Variance[2][1];
m_Diff_VarianceInverse[0][0]=(m_Diff_Variance[1][1]*m_Diff_Variance[2][2]-m_Diff_Variance[2][1]*m_Diff_Variance[1][2])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[0][1]=-(m_Diff_Variance[1][0]*m_Diff_Variance[2][2]-m_Diff_Variance[2][0]*m_Diff_Variance[1][2])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[0][2]=(m_Diff_Variance[1][0]*m_Diff_Variance[2][1]-m_Diff_Variance[2][0]*m_Diff_Variance[1][1])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[1][0]=-(m_Diff_Variance[0][1]*m_Diff_Variance[2][2]-m_Diff_Variance[2][1]*m_Diff_Variance[0][2])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[1][1]=(m_Diff_Variance[0][0]*m_Diff_Variance[2][2]-m_Diff_Variance[2][0]*m_Diff_Variance[0][2])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[1][2]=-(m_Diff_Variance[0][0]*m_Diff_Variance[2][1]-m_Diff_Variance[2][0]*m_Diff_Variance[0][1])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[2][0]=(m_Diff_Variance[0][1]*m_Diff_Variance[1][2]-m_Diff_Variance[1][1]*m_Diff_Variance[0][2])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[2][1]=-(m_Diff_Variance[0][0]*m_Diff_Variance[1][2]-m_Diff_Variance[1][0]*m_Diff_Variance[0][2])
/m_Diff_VarianceDet;
m_Diff_VarianceInverse[2][2]=(m_Diff_Variance[0][0]*m_Diff_Variance[1][1]-m_Diff_Variance[1][0]*m_Diff_Variance[0][1])
/m_Diff_VarianceDet;
}
Superclass::GenerateData();
}
template <class TInputImage, class TOutputImage>
void
SimpleFuzzyConnectednessRGBImageFilter<TInputImage,TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Mean = " << m_Mean << std::endl;
os << indent << "Diff_Mean = " << m_Diff_Mean << std::endl;
}
} /* end namespace itk. */
#endif
|