File: itkLabelImageToStatisticsLabelMapFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (114 lines) | stat: -rw-r--r-- 4,194 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkLabelImageToStatisticsLabelMapFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkLabelImageToStatisticsLabelMapFilter_txx
#define __itkLabelImageToStatisticsLabelMapFilter_txx

#include "itkLabelImageToStatisticsLabelMapFilter.h"
#include "itkProgressAccumulator.h"


namespace itk {

template<class TInputImage, class TFeatureImage, class TOutputImage>
LabelImageToStatisticsLabelMapFilter<TInputImage, TFeatureImage, TOutputImage>
::LabelImageToStatisticsLabelMapFilter()
{
  m_BackgroundValue = NumericTraits<OutputImagePixelType>::NonpositiveMin();
  m_ComputeFeretDiameter = false;
  m_ComputePerimeter = false;
  m_NumberOfBins = 128;
  m_ComputeHistogram = true;
  this->SetNumberOfRequiredInputs(2);
}

template<class TInputImage, class TFeatureImage, class TOutputImage>
void 
LabelImageToStatisticsLabelMapFilter<TInputImage, TFeatureImage, TOutputImage>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // We need all the input.
  InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
  if( input )
    {
    input->SetRequestedRegion( input->GetLargestPossibleRegion() );
    }
}


template<class TInputImage, class TFeatureImage, class TOutputImage>
void 
LabelImageToStatisticsLabelMapFilter<TInputImage, TFeatureImage, TOutputImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()
    ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}


template<class TInputImage, class TFeatureImage, class TOutputImage>
void
LabelImageToStatisticsLabelMapFilter<TInputImage, TFeatureImage, TOutputImage>
::GenerateData()
{
  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // Allocate the output
  this->AllocateOutputs();
  
  typename LabelizerType::Pointer labelizer = LabelizerType::New();
  labelizer->SetInput( this->GetInput() );
  labelizer->SetBackgroundValue( m_BackgroundValue );
  labelizer->SetNumberOfThreads( this->GetNumberOfThreads() );
  progress->RegisterInternalFilter(labelizer, .5f);
  
  typename LabelObjectValuatorType::Pointer valuator = LabelObjectValuatorType::New();
  valuator->SetInput( labelizer->GetOutput() );
  valuator->SetFeatureImage( this->GetFeatureImage() );
  valuator->SetNumberOfThreads( this->GetNumberOfThreads() );
  valuator->SetComputePerimeter( m_ComputePerimeter );
  valuator->SetComputeFeretDiameter( m_ComputeFeretDiameter );
  valuator->SetComputeHistogram( m_ComputeHistogram );
  valuator->SetNumberOfBins( m_NumberOfBins );
  progress->RegisterInternalFilter(valuator, .5f);

  valuator->GraftOutput( this->GetOutput() );
  valuator->Update();
  this->GraftOutput( valuator->GetOutput() );
}


template<class TInputImage, class TFeatureImage, class TOutputImage>
void
LabelImageToStatisticsLabelMapFilter<TInputImage, TFeatureImage, TOutputImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "BackgroundValue: "  << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue) << std::endl;
  os << indent << "ComputeFeretDiameter: " << m_ComputeFeretDiameter << std::endl;
  os << indent << "ComputePerimeter: " << m_ComputePerimeter << std::endl;
  os << indent << "ComputeHistogram: " << m_ComputeHistogram << std::endl;
  os << indent << "NumberOfBins: " << m_NumberOfBins << std::endl;
}
  
}// end namespace itk
#endif