1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCylinderSpatialObject.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkCylinderSpatialObject.h"
#include <string.h>
namespace itk
{
/** Constructor */
CylinderSpatialObject::CylinderSpatialObject()
{
this->SetTypeName("CylinderSpatialObject");
this->SetDimension(3);
m_Radius = 1.0;
m_Height = 1.0;
}
/** Destructor */
CylinderSpatialObject ::~CylinderSpatialObject()
{
}
/** Test whether a point is inside or outside the object
* For computational speed purposes, it is faster if the method does not
* check the name of the class and the current depth */
bool CylinderSpatialObject
::IsInside( const PointType & point) const
{
if( !this->SetInternalInverseTransformToWorldToIndexTransform() )
{
return false;
}
PointType transformedPoint =
this->GetInternalInverseTransform()->TransformPoint(point);
this->ComputeLocalBoundingBox();
if( this->GetBounds()->IsInside(point) )
{
// Check if the point is on the normal plane
PointType a,b;
a[0] = 0;
a[1] = -m_Height/2;
a[2] = 0;
b[0] = 0;
b[1] = m_Height/2;
b[2] = 0;
double A = 0;
double B = 0;
for(unsigned int i = 0;i<3;i++)
{
A += (b[i]-a[i])*(transformedPoint[i]-a[i]);
B += (b[i]-a[i])*(b[i]-a[i]);
}
double lambda = A/B;
if( (
(lambda>-(m_Radius/(2*vcl_sqrt(B))))
&& (lambda<0))
|| ((lambda <= 1.0) && (lambda >= 0.0))
)
{
PointType p;
for(unsigned int i = 0;i<3;i++)
{
p[i] = a[i]+lambda*(b[i]-a[i]);
}
double tempSquareDist=transformedPoint.EuclideanDistanceTo(p);
double R = m_Radius;
if(tempSquareDist <= R)
{
return true;
}
}
}
return false;
}
/** Test if the given point is inside the Cylinder */
bool CylinderSpatialObject
::IsInside( const PointType & point, unsigned int depth, char * name ) const
{
itkDebugMacro( "Checking the point [" << point << "] is inside the Cylinder" );
if(name == NULL)
{
if(IsInside(point))
{
return true;
}
}
else if(strstr(typeid(Self).name(), name))
{
if(IsInside(point))
{
return true;
}
}
return Superclass::IsInside(point, depth, name);
}
/** Compute the bounds of the Cylinder */
bool CylinderSpatialObject
::ComputeLocalBoundingBox() const
{
itkDebugMacro( "Computing tube bounding box" );
if( this->GetBoundingBoxChildrenName().empty()
|| strstr(typeid(Self).name(), this->GetBoundingBoxChildrenName().c_str()) )
{
// First point
PointType ptMin,ptMax;
ptMin[0] = -m_Radius;
ptMin[1] = -m_Height/2;
ptMin[2] = -m_Radius;
ptMin = this->GetIndexToWorldTransform()->TransformPoint(ptMin);
ptMax[0] = +m_Radius;
ptMax[1] = -m_Height/2;
ptMax[2] = +m_Radius;
ptMax = this->GetIndexToWorldTransform()->TransformPoint(ptMax);
const_cast<BoundingBoxType *>(this->GetBounds())->SetMinimum(ptMin);
const_cast<BoundingBoxType *>(this->GetBounds())->SetMaximum(ptMax);
ptMin[0] = -m_Radius;
ptMin[1] = +m_Height/2;
ptMin[2] = -m_Radius;
ptMin = this->GetIndexToWorldTransform()->TransformPoint(ptMin);
ptMax[0] = +m_Radius;
ptMax[1] = +m_Height/2;
ptMax[2] = +m_Radius;
ptMax = this->GetIndexToWorldTransform()->TransformPoint(ptMax);
const_cast<BoundingBoxType *>(this->GetBounds())->ConsiderPoint(ptMin);
const_cast<BoundingBoxType *>(this->GetBounds())->ConsiderPoint(ptMax);
}
return true;
}
/** Returns if the Cylinder os evaluable at one point */
bool CylinderSpatialObject
::IsEvaluableAt( const PointType & point, unsigned int depth, char * name ) const
{
itkDebugMacro( "Checking if the Cylinder is evaluable at " << point );
return IsInside(point, depth, name);
}
/** Returns the value at one point */
bool CylinderSpatialObject
::ValueAt( const PointType & point, double & value, unsigned int depth,
char * name ) const
{
itkDebugMacro( "Getting the value of the Cylinder at " << point );
if( IsInside(point, 0, name) )
{
value = this->GetDefaultInsideValue();
return true;
}
else
{
if( Superclass::IsEvaluableAt(point, depth, name) )
{
Superclass::ValueAt(point, value, depth, name);
return true;
}
else
{
value = this->GetDefaultOutsideValue();
return false;
}
}
return false;
}
/** Print Self function */
void CylinderSpatialObject
::PrintSelf( std::ostream& os, Indent indent ) const
{
Superclass::PrintSelf(os, indent);
os << "Radius: " << m_Radius << std::endl;
os << "Height: " << m_Height << std::endl;
}
} // end namespace itk
|