1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: BayesianPluginClassifier.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Software Guide : BeginLatex
//
// \index{Statistics!Bayesian plugin classifier}
// \index{itk::Statistics::SampleClassifier}
// \index{itk::Statistics::GaussianDensityFunction}
// \index{itk::Statistics::NormalVariateGenerator}
//
// In this example, we present a system that places measurement vectors into
// two Gaussian classes. The Figure~\ref{fig:BayesianPluginClassifier} shows
// all the components of the classifier system and the data flow. This system
// differs with the previous k-means clustering algorithms in several
// ways. The biggest difference is that this classifier uses the
// \subdoxygen{Statistics}{GaussianDensityFunction}s as membership functions
// instead of the \subdoxygen{Statistics}{EuclideanDistance}. Since the
// membership function is different, the membership function requires a
// different set of parameters, mean vectors and covariance matrices. We
// choose the \subdoxygen{Statistics}{MeanCalculator} (sample mean) and the
// \subdoxygen{Statistics}{CovarianceCalculator} (sample covariance) for the
// estimation algorithms of the two parameters. If we want more robust
// estimation algorithm, we can replace these estimation algorithms with more
// alternatives without changing other components in the classifier system.
//
// It is a bad idea to use the same sample for test and training
// (parameter estimation) of the parameters. However, for simplicity, in
// this example, we use a sample for test and training.
//
// \begin{figure}
// \centering
// \includegraphics[width=0.9\textwidth]{BayesianPluginClassifier.eps}
// \itkcaption[Bayesian plug-in classifier for two Gaussian classes]{Bayesian
// plug-in classifier for two Gaussian classes.}
// \protect\label{fig:BayesianPluginClassifier}
// \end{figure}
//
// We use the \subdoxygen{Statistics}{ListSample} as the sample (test
// and training). The \doxygen{Vector} is our measurement vector
// class. To store measurement vectors into two separate sample
// containers, we use the \subdoxygen{Statistics}{Subsample} objects.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVector.h"
#include "itkListSample.h"
#include "itkSubsample.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following two files provides us the parameter estimation algorithms.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkMeanCalculator.h"
#include "itkCovarianceCalculator.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following files define the components required by ITK statistical
// classification framework: the decision rule, the membership
// function, and the classifier.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkMaximumRatioDecisionRule.h"
#include "itkGaussianDensityFunction.h"
#include "itkSampleClassifier.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We will fill the sample with random variables from two normal
// distribution using the \subdoxygen{Statistics}{NormalVariateGenerator}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkNormalVariateGenerator.h"
// Software Guide : EndCodeSnippet
int main( int, char *[])
{
// Software Guide : BeginLatex
//
// Since the NormalVariateGenerator class only supports 1-D, we define our
// measurement vector type as a one component vector. We then, create a
// ListSample object for data inputs.
//
// We also create two Subsample objects that will store
// the measurement vectors in \code{sample} into two separate
// sample containers. Each Subsample object stores only the
// measurement vectors belonging to a single class. This class sample
// will be used by the parameter estimation algorithms.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( 1 ); // length of measurement vectors
// in the sample.
typedef itk::Statistics::Subsample< SampleType > ClassSampleType;
std::vector< ClassSampleType::Pointer > classSamples;
for ( unsigned int i = 0 ; i < 2 ; ++i )
{
classSamples.push_back( ClassSampleType::New() );
classSamples[i]->SetSample( sample );
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code snippet creates a NormalVariateGenerator
// object. Since the random variable generator returns values according to
// the standard normal distribution (the mean is zero, and the standard
// deviation is one) before pushing random values into the \code{sample},
// we change the mean and standard deviation. We want two normal (Gaussian)
// distribution data. We have two for loops. Each for loop uses different
// mean and standard deviation. Before we fill the \code{sample} with the
// second distribution data, we call \code{Initialize(random seed)} method,
// to recreate the pool of random variables in the
// \code{normalGenerator}. In the second for loop, we fill the two class
// samples with measurement vectors using the \code{AddInstance()} method.
//
// To see the probability density plots from the two distributions,
// refer to Figure~\ref{fig:TwoNormalDensityFunctionPlot}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
normalGenerator->Initialize( 101 );
MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
SampleType::InstanceIdentifier id = 0UL;
for ( unsigned int i = 0 ; i < 100 ; ++i )
{
mv.Fill( (normalGenerator->GetVariate() * standardDeviation ) + mean);
sample->PushBack( mv );
classSamples[0]->AddInstance( id );
++id;
}
normalGenerator->Initialize( 3024 );
mean = 200;
standardDeviation = 30;
for ( unsigned int i = 0 ; i < 100 ; ++i )
{
mv.Fill( (normalGenerator->GetVariate() * standardDeviation ) + mean);
sample->PushBack( mv );
classSamples[1]->AddInstance( id );
++id;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the following code snippet, notice that the template argument for the
// MeanCalculator and CovarianceCalculator is \code{ClassSampleType} (i.e.,
// type of Subsample) instead of SampleType (i.e., type of ListSample). This
// is because the parameter estimation algorithms are applied to the class
// sample.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::MeanCalculator< ClassSampleType > MeanEstimatorType;
typedef itk::Statistics::CovarianceCalculator< ClassSampleType >
CovarianceEstimatorType;
std::vector< MeanEstimatorType::Pointer > meanEstimators;
std::vector< CovarianceEstimatorType::Pointer > covarianceEstimators;
for ( unsigned int i = 0 ; i < 2 ; ++i )
{
meanEstimators.push_back( MeanEstimatorType::New() );
meanEstimators[i]->SetInputSample( classSamples[i] );
meanEstimators[i]->Update();
covarianceEstimators.push_back( CovarianceEstimatorType::New() );
covarianceEstimators[i]->SetInputSample( classSamples[i] );
covarianceEstimators[i]->SetMean( meanEstimators[i]->GetOutput() );
covarianceEstimators[i]->Update();
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We print out the estimated parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
for ( unsigned int i = 0 ; i < 2 ; ++i )
{
std::cout << "class[" << i << "] " << std::endl;
std::cout << " estimated mean : "
<< *(meanEstimators[i]->GetOutput())
<< " covariance matrix : "
<< *(covarianceEstimators[i]->GetOutput()) << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After creating a SampleClassifier object and a
// MaximumRatioDecisionRule object, we plug in the
// \code{decisionRule} and the \code{sample} to the classifier. Then,
// we specify the number of classes that will be considered using
// the \code{SetNumberOfClasses()} method.
//
// The MaximumRatioDecisionRule requires a vector of \emph{a
// priori} probability values. Such \emph{a priori} probability will
// be the $P(\omega_{i})$ of the following variation of the Bayes
// decision rule:
// \begin{equation}
// \textrm{Decide } \omega_{i} \textrm{ if }
// \frac{p(\overrightarrow{x}|\omega_{i})}
// {p(\overrightarrow{x}|\omega_{j})}
// > \frac{P(\omega_{j})}{P(\omega_{i})} \textrm{ for all } j \not= i
// \label{eq:bayes2}
// \end{equation}
//
// The remainder of the code snippet shows how to use user-specified class
// labels. The classification result will be stored in a
// MembershipSample object, and for each measurement vector, its
// class label will be one of the two class labels, 100 and 200
// (\code{unsigned int}).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::GaussianDensityFunction< MeasurementVectorType >
MembershipFunctionType;
typedef itk::MaximumRatioDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
DecisionRuleType::APrioriVectorType aPrioris;
aPrioris.push_back( classSamples[0]->GetTotalFrequency()
/ sample->GetTotalFrequency() ) ;
aPrioris.push_back( classSamples[1]->GetTotalFrequency()
/ sample->GetTotalFrequency() ) ;
decisionRule->SetAPriori( aPrioris );
typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::New();
classifier->SetDecisionRule( (itk::DecisionRuleBase::Pointer) decisionRule);
classifier->SetSample( sample );
classifier->SetNumberOfClasses( 2 );
std::vector< unsigned int > classLabels;
classLabels.resize( 2 );
classLabels[0] = 100;
classLabels[1] = 200;
classifier->SetMembershipFunctionClassLabels(classLabels);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{classifier} is almost ready to perform the classification
// except that it needs two membership functions that represent the two
// clusters.
//
// In this example, we can imagine that the two clusters are modeled by two
// Euclidean distance functions. The distance function (model) has only one
// parameter, the mean (centroid) set by the \code{SetOrigin()} method. To
// plug-in two distance functions, we call the
// \code{AddMembershipFunction()} method. Then invocation of the
// \code{Update()} method will perform the classification.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::vector< MembershipFunctionType::Pointer > membershipFunctions;
for ( unsigned int i = 0 ; i < 2 ; i++ )
{
membershipFunctions.push_back(MembershipFunctionType::New());
membershipFunctions[i]->SetMean( meanEstimators[i]->GetOutput() );
membershipFunctions[i]->
SetCovariance( covarianceEstimators[i]->GetOutput() );
classifier->AddMembershipFunction(membershipFunctions[i].GetPointer());
}
classifier->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code snippet prints out pairs of a measurement vector and
// its class label in the \code{sample}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ClassifierType::OutputType* membershipSample = classifier->GetOutput();
ClassifierType::OutputType::ConstIterator iter = membershipSample->Begin();
while ( iter != membershipSample->End() )
{
std::cout << "measurement vector = " << iter.GetMeasurementVector()
<< "class label = " << iter.GetClassLabel() << std::endl;
++iter;
}
// Software Guide : EndCodeSnippet
return 0;
}
|