File: itkBinaryMedialNodeMetricTest.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (225 lines) | stat: -rw-r--r-- 7,647 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkBinaryMedialNodeMetricTest.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkImageRegionIterator.h"
#include "itkGradientImageFilter.h"
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"

#include "itkBinaryMedialNodeMetric.h"
#include "itkGradientImageToBloxBoundaryPointImageFilter.h"
#include "itkBloxBoundaryPointImage.h"
#include "itkBloxCoreAtomImage.h"
#include "itkBloxBoundaryPointToCoreAtomImageFilter.h"

// 
// Main Executable Test Function
//
int itkBinaryMedialNodeMetricTest(int, char* [])
{
  
  //
  // set up the initial image
  //
  std::cout << "Setting up initial image" << std::endl;
  
  const unsigned int dimension = 3;
  typedef itk::Image<unsigned char, dimension> ImageType;
  ImageType::Pointer inputImage = ImageType::New();
  
  // set up spacing and origin
  ImageType::SpacingValueType inputImageSpacing[] = {1.0,1.0,1.0};
  ImageType::PointValueType inputImageOrigin[] = {0,0,0};
  inputImage->SetOrigin(inputImageOrigin);
  inputImage->SetSpacing(inputImageSpacing);
  
  // set up size and largest region
  ImageType::SizeValueType inputImageSize[] = {20,20,20};
  ImageType::SizeType inputImageSizeObject;
  inputImageSizeObject.SetSize(inputImageSize);
  ImageType::RegionType largestRegion;
  largestRegion.SetSize(inputImageSizeObject);
  inputImage->SetLargestPossibleRegion(largestRegion);
  inputImage->SetBufferedRegion(largestRegion);
  inputImage->SetRequestedRegion(largestRegion);
  inputImage->Allocate();
  
  // set all pixels to 0
  typedef itk::ImageRegionIterator<ImageType> ImageIterType;
  ImageIterType iter = ImageIterType(inputImage, largestRegion);
  for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
    {
    iter.Set(0);
    }
  
  // add a sphere to the image
  std::cout << "Adding sphere to image" << std::endl;
  
  typedef itk::SphereSpatialFunction<dimension> SphereFunctionType;
  typedef SphereFunctionType::InputType SphereFunctionPositionType;
  
  SphereFunctionType::Pointer sphereFunc = SphereFunctionType::New();
  sphereFunc->SetRadius(5);
  SphereFunctionPositionType center;
  center[0] = 10;
  center[1] = 10;
  center[2] = 10;
  sphereFunc->SetCenter(center);
  
  ImageType::IndexType seedPos;
  const ImageType::IndexValueType centerPos[] = {10,10,10};
  seedPos.SetIndex(centerPos);
  
  typedef itk::FloodFilledSpatialFunctionConditionalIterator
    <ImageType, SphereFunctionType> FuncIterType;
  FuncIterType sphereIter = FuncIterType(inputImage, sphereFunc, seedPos);
  for ( ; !sphereIter.IsAtEnd(); ++sphereIter)
    {
    sphereIter.Set(255);
    }
  
  
  //
  // compute the gradient image
  //
  std::cout << "Computing gradient of image" << std::endl;
  
  typedef itk::GradientImageFilter<ImageType, float, float>  GradientImageFilterType;
  typedef GradientImageFilterType::OutputImageType           GradientImageType;
  
  GradientImageFilterType::Pointer gradientFilter = GradientImageFilterType::New();
  gradientFilter->SetInput(inputImage);
  
  
  //
  // convert to a blox boundary point image
  //
  std::cout << "Converting to blox boundary point image" << std::endl;
  
  typedef itk::GradientImageToBloxBoundaryPointImageFilter<GradientImageType> GrToBloxFilterType;
  typedef GrToBloxFilterType::OutputImageType                                 BloxBPImageType;
  
  GrToBloxFilterType::Pointer toBloxFilter = GrToBloxFilterType::New();
  toBloxFilter->SetInput(gradientFilter->GetOutput());
  toBloxFilter->Update();
  
  
  //
  // convert to core atom images
  //
  std::cout << "Converting to core atom image and duplicating" << std::endl;
  
  typedef itk::BloxBoundaryPointToCoreAtomImageFilter<3> BPToCoreAtomFilterType;
  typedef BPToCoreAtomFilterType::OutputImageType        CoreAtomImageType;
  
  BPToCoreAtomFilterType::Pointer toCoreAtomFilter = BPToCoreAtomFilterType::New();
  toCoreAtomFilter->SetInput(toBloxFilter->GetOutput());
  toCoreAtomFilter->SetDistanceMin(8.0);
  toCoreAtomFilter->SetDistanceMax(12.0);
  toCoreAtomFilter->SetEpsilon(0.05);
  toCoreAtomFilter->SetPolarity(0);
  
  CoreAtomImageType::Pointer coreAtomImageA = toCoreAtomFilter->GetOutput();
  CoreAtomImageType::Pointer coreAtomImageB = toCoreAtomFilter->GetOutput();
  toCoreAtomFilter->Update();
  
  
  //
  // Process the core atom images
  //
  std::cout << "Performing core atom analysis" << std::endl;
  
  coreAtomImageA->DoEigenanalysis();
  coreAtomImageA->DoCoreAtomVoting();
  coreAtomImageB->DoEigenanalysis();
  coreAtomImageB->DoCoreAtomVoting();
  
  
  //
  // test the distance metric
  //
  std::cout << "Number of medial nodes = " << coreAtomImageA->GetMedialNodeCount() << std::endl;
  
  typedef CoreAtomImageType::RegionType CARegionType;
  typedef itk::ImageRegionIterator<CoreAtomImageType> CAIterType;
  typedef itk::BinaryMedialNodeMetric<dimension> MetricType;
  typedef MetricType::MedialNode MedialNodeType;
  
  double totalDistance = 0;
  MetricType::Pointer medialBinaryMetric = MetricType::New();
  
  // loop over pixels in groups of two
  CARegionType::SizeType imSize = coreAtomImageA->GetLargestPossibleRegion().GetSize();
  //std::cout << "Size = " << imSize << std::endl;
  for (unsigned int x = 0; x < imSize[0]; x+=2)
    {
    for (unsigned int y = 0; y < imSize[1]; y++)
      {
      for (unsigned int z = 0; z < imSize[2]; z++)
        {
        
        //DEBUG
        std::cout << "Working on pixels ("<<x<<","<<y<<","<<z<<") and ("<<x+1<<","<<y<<","<<z<<")"<<std::endl;
        
        CoreAtomImageType::IndexType idx1;
        idx1[0] = x;
        idx1[1] = y;
        idx1[2] = z;
        CoreAtomImageType::IndexType idx2;
        idx2[0] = x+1;
        idx2[1] = y;
        idx2[2] = z;
        
        MedialNodeType* A1 = &(coreAtomImageA->GetPixel(idx1));
        MedialNodeType* A2 = &(coreAtomImageA->GetPixel(idx2));
        MedialNodeType* B1 = &(coreAtomImageB->GetPixel(idx1));
        MedialNodeType* B2 = &(coreAtomImageB->GetPixel(idx2));
        
        medialBinaryMetric->SetMedialNodes(A1,A2,B1,B2);
        medialBinaryMetric->ShowCalculation();
        medialBinaryMetric->Initialize();
        totalDistance += (1.0-medialBinaryMetric->GetResult());
        
        }
      }
    }
  
  // check to make sure the metric measured the images as the same
  double precision = 0.0000001;
  if ( totalDistance > precision )
    {
    std::cout << "[FAILED] Metric did not identify two identical images. Total distance = " << totalDistance << std::endl;
    return EXIT_FAILURE;
    }
  
  // Test printing
  std::cout << "Printing Metric" << std::endl << medialBinaryMetric << std::endl;
  
  // Test type name
  if (strcmp(medialBinaryMetric->GetNameOfClass(),"BinaryMedialNodeMetric"))
    {
    std::cout << "[FAILED] Class info not reported correctly" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Metric Type Info: " << medialBinaryMetric->GetNameOfClass() << std::endl;
  
  // finished successfully
  return EXIT_SUCCESS;
}