1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
#include "v3p_netlib.h"
#undef abs
#undef min
#undef max
#include <math.h>
#include <stdio.h>
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))
extern double sqrt(double), exp(double), pow(double,double), log(double); /* #include <math.h> */
static void norcdf_(real *x, real *cdf);
static void dnorcdf_(doublereal *x, doublereal *cdf);
/* Subroutine */ void chscdf_(real *x, integer *nu, real *cdf)
{
/* Initialized data */
integer nucut = 1000;
doublereal b43 = 17.;
doublereal pi = 3.14159265358979;
doublereal dpower = .33333333333333;
doublereal b11 = .33333333333333;
doublereal b21 = -.02777777777778;
doublereal b31 = -6.1728395061e-4;
doublereal b32 = -13.;
doublereal b41 = 1.8004115226e-4;
doublereal b42 = 6.;
/* Local variables */
real cdfn;
integer imin, imax;
doublereal term, term0, term1, term2, term3, term4;
integer i;
doublereal dcdfn, dfact;
real amean, u, z;
integer ibran;
real spchi;
doublereal d1, d2, d3, ai;
real sd;
doublereal dw, dx;
integer ievodd;
doublereal chi;
real anu;
doublereal danu, danu2, dnu;
doublereal sum;
/* PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION */
/* WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU. */
/* THIS DISTRIBUTION IS DEFINED FOR ALL NON-NEGATIVE X. */
/* THE PROBABILITY DENSITY FUNCTION IS GIVEN */
/* IN THE REFERENCES BELOW. */
/* INPUT ARGUMENTS--X = THE SINGLE PRECISION VALUE AT */
/* WHICH THE CUMULATIVE DISTRIBUTION */
/* FUNCTION IS TO BE EVALUATED. */
/* X SHOULD BE NON-NEGATIVE. */
/* --NU = THE INTEGER NUMBER OF DEGREES */
/* OF FREEDOM. */
/* NU SHOULD BE POSITIVE. */
/* OUTPUT ARGUMENTS--CDF = THE SINGLE PRECISION CUMULATIVE */
/* DISTRIBUTION FUNCTION VALUE. */
/* OUTPUT--THE SINGLE PRECISION CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE CDF FOR THE CHI-SQUARED DISTRIBUTION */
/* WITH DEGREES OF FREEDOM PARAMETER = NU. */
/* PRINTING--NONE UNLESS AN INPUT ARGUMENT ERROR CONDITION EXISTS. */
/* RESTRICTIONS--X SHOULD BE NON-NEGATIVE. */
/* --NU SHOULD BE A POSITIVE INTEGER VARIABLE. */
/* OTHER DATAPAC SUBROUTINES NEEDED--NORCDF. */
/* FORTRAN LIBRARY SUBROUTINES NEEDED--DSQRT, DEXP. */
/* MODE OF INTERNAL OPERATIONS--DOUBLE PRECISION. */
/* LANGUAGE--ANSI FORTRAN. */
/* REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS */
/* SERIES 55, 1964, PAGE 941, FORMULAE 26.4.4 AND 26.4.5.*/
/* --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE */
/* DISTRIBUTIONS--1, 1970, PAGE 176, */
/* FORMULA 28, AND PAGE 180, FORMULA 33.1. */
/* --OWEN, HANDBOOK OF STATISTICAL TABLES, */
/* 1962, PAGES 50-55. */
/* --PEARSON AND HARTLEY, BIOMETRIKA TABLES */
/* FOR STATISTICIANS, VOLUME 1, 1954, */
/* PAGES 122-131. */
/* WRITTEN BY--JAMES J. FILLIBEN */
/* STATISTICAL ENGINEERING LABORATORY (205.03) */
/* NATIONAL BUREAU OF STANDARDS */
/* WASHINGTON, D. C. 20234 */
/* PHONE: 301-921-2315 */
/* ORIGINAL VERSION--JUNE 1972. */
/* UPDATED --MAY 1974. */
/* UPDATED --SEPTEMBER 1975. */
/* UPDATED --NOVEMBER 1975. */
/* UPDATED --OCTOBER 1976. */
/* */
/* --------------------------------------------------------------------- */
/* CHECK THE INPUT ARGUMENTS FOR ERRORS */
if (*nu <= 0) {
fprintf(stderr,"(***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NON-POSITIVE *****)");
fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %ld *****\002)",*nu);
*cdf = 0.f;
return;
}
if (*x < 0.f) {
fprintf(stderr,"(***** NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NEGATIVE *****)");
fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %f *****\002)",*x);
*cdf = 0.f;
return;
}
dx = *x;
anu = (real) (*nu);
dnu = (doublereal) (*nu);
/* IF X IS NON-POSITIVE, SET CDF = 0.0 AND RETURN. */
/* IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/* STANDARD DEVIATIONS BELOW THE MEAN, */
/* SET CDF = 0.0 AND RETURN. */
/* IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/* STANDARD DEVIATIONS BELOW THE MEAN, */
/* SET CDF = 0.0 AND RETURN. */
/* IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/* STANDARD DEVIATIONS ABOVE THE MEAN, */
/* SET CDF = 1.0 AND RETURN. */
/* IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/* STANDARD DEVIATIONS ABOVE THE MEAN, */
/* SET CDF = 1.0 AND RETURN. */
if (*x <= 0.f) {
*cdf = 0.f;
return;
}
amean = anu;
sd = (float)sqrt(anu * 2.f);
z = (*x - amean) / sd;
if (*nu < 10 && z < -200.f) {
*cdf = 0.f;
return;
}
if (*nu >= 10 && z < -100.f) {
*cdf = 0.f;
return;
}
if (*nu < 10 && z > 200.f) {
*cdf = 1.f;
return;
}
if (*nu >= 10 && z > 100.f) {
*cdf = 1.f;
return;
}
/* DISTINGUISH BETWEEN 3 SEPARATE REGIONS */
/* OF THE (X,NU) SPACE. */
/* BRANCH TO THE PROPER COMPUTATIONAL METHOD */
/* DEPENDING ON THE REGION. */
/* NUCUT HAS THE VALUE 1000. */
if (*nu < nucut) {
goto L1000;
}
if (*nu >= nucut && *x <= anu) {
goto L2000;
}
if (*nu >= nucut && *x > anu) {
goto L3000;
}
ibran = 1;
fprintf(stderr,"(*****INTERNAL ERROR IN CHSCDF SUBROUTINE -- IMPOSSIBLE BRANCH CONDITION AT BRANCH POINT %ld)",ibran);
return;
/* TREAT THE SMALL AND MODERATE DEGREES OF FREEDOM CASE */
/* (THAT IS, WHEN NU IS SMALLER THAN 1000). */
/* METHOD UTILIZED--EXACT FINITE SUM */
/* (SEE AMS 55, PAGE 941, FORMULAE 26.4.4 AND 26.4.5). */
L1000:
chi = sqrt(dx);
ievodd = *nu - (*nu / 2 << 1);
if (ievodd == 0) {
sum = 1.;
term = 1.;
imin = 2;
imax = *nu - 2;
}
else {
sum = 0.;
term = 1.f / chi;
imin = 1;
imax = *nu - 1;
}
if (imin <= imax)
for (i = imin; i <= imax; i += 2) {
ai = (doublereal) i;
term *= dx / ai;
sum += term;
}
sum *= exp(-dx / 2.);
if (ievodd != 0) {
sum *= sqrt(2. / pi);
spchi = (float)chi;
norcdf_(&spchi, &cdfn);
dcdfn = cdfn;
sum += (1. - dcdfn) * 2.;
}
*cdf = 1.f - (float)sum;
return;
/* TREAT THE CASE WHEN NU IS LARGE */
/* (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/* AND X IS LESS THAN OR EQUAL TO NU. */
/* METHOD UTILIZED--WILSON-HILFERTY APPROXIMATION */
/* (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 176, FORMULA 28). */
L2000:
dfact = dnu * 4.5;
u = (float)(dx / dnu);
u = (float)((pow(u, dpower) - 1.0 + 1.0 / dfact) * sqrt(dfact));
norcdf_(&u, &cdfn);
*cdf = cdfn;
return;
/* TREAT THE CASE WHEN NU IS LARGE */
/* (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/* AND X IS LARGER THAN NU. */
/* METHOD UTILIZED--HILL'S ASYMPTOTIC EXPANSION */
/* (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 180, FORMULA 33.1). */
L3000:
dw = sqrt(dx - dnu - dnu * log(dx / dnu));
danu = sqrt(2.0 / dnu);
d1 = dw;
d2 = dw * dw;
d3 = dw * d2;
term0 = dw;
term1 = b11 * danu;
danu2 = danu * danu;
term2 = b21 * d1 * danu2;
term3 = b31 * (d2 + b32) * danu * danu2;
term4 = b41 * (b42 * d3 + b43 * d1) * danu2 * danu2;
u = (float)(term0 + term1 + term2 + term3 + term4);
norcdf_(&u, &cdfn);
*cdf = cdfn;
} /* chscdf_ */
/* Subroutine */
static void norcdf_(real *x, real *cdf)
{
/* Initialized data */
real b1 = .31938153f;
real b2 = -.356563782f;
real b3 = 1.781477937f;
real b4 = -1.821255978f;
real b5 = 1.330274429f;
real p = .2316419f;
/* System generated locals */
real tt;
/* Local variables */
real t, z;
/* PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE FOR THE NORMAL (GAUSSIAN) */
/* DISTRIBUTION WITH MEAN = 0 AND STANDARD DEVIATION = 1. */
/* THIS DISTRIBUTION IS DEFINED FOR ALL X AND HAS */
/* THE PROBABILITY DENSITY FUNCTION */
/* F(X) = (1/SQRT(2*PI))*EXP(-X*X/2). */
/* INPUT ARGUMENTS--X = THE SINGLE PRECISION VALUE AT */
/* WHICH THE CUMULATIVE DISTRIBUTION */
/* FUNCTION IS TO BE EVALUATED. */
/* OUTPUT ARGUMENTS--CDF = THE SINGLE PRECISION CUMULATIVE */
/* DISTRIBUTION FUNCTION VALUE. */
/* OUTPUT--THE SINGLE PRECISION CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE CDF. */
/* PRINTING--NONE. */
/* RESTRICTIONS--NONE. */
/* OTHER DATAPAC SUBROUTINES NEEDED--NONE. */
/* FORTRAN LIBRARY SUBROUTINES NEEDED--EXP. */
/* MODE OF INTERNAL OPERATIONS--SINGLE PRECISION. */
/* LANGUAGE--ANSI FORTRAN. */
/* REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS */
/* SERIES 55, 1964, PAGE 932, FORMULA 26.2.17. */
/* --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE */
/* DISTRIBUTIONS--1, 1970, PAGES 40-111. */
/* WRITTEN BY--JAMES J. FILLIBEN */
/* STATISTICAL ENGINEERING LABORATORY (205.03) */
/* NATIONAL BUREAU OF STANDARDS */
/* WASHINGTON, D. C. 20234 */
/* PHONE: 301-921-2315 */
/* ORIGINAL VERSION--JUNE 1972. */
/* UPDATED --SEPTEMBER 1975. */
/* UPDATED --NOVEMBER 1975. */
/* */
/* --------------------------------------------------------------------- */
/* CHECK THE INPUT ARGUMENTS FOR ERRORS. */
/* NO INPUT ARGUMENT ERRORS POSSIBLE FOR THIS DISTRIBUTION. */
z = *x;
if (z < 0.f)
z = -z;
t = 1.f / (p * z + 1.f);
tt = t*t;
*cdf = 1.f - (float)exp(z * -.5f * z) * .39894228040143f * (b1 * t + b2 * tt + b3 * t*tt + b4 * tt*tt + b5 * t*tt*tt);
if (*x < 0.f) {
*cdf = 1.f - *cdf;
}
} /* norcdf_ */
/* Subroutine */ void dchscdf_(doublereal* x, integer* nu, doublereal* cdf)
{
/* Initialized data */
integer nucut = 1000;
doublereal b43 = 17.;
doublereal pi = 3.14159265358979;
doublereal dpower = .333333333333333333;
doublereal b11 = .333333333333333333;
doublereal b21 = -.027777777777777778;
doublereal b31 = -6.1728395061e-4;
doublereal b32 = -13.;
doublereal b41 = 1.8004115226e-4;
doublereal b42 = 6.;
/* System generated locals */
doublereal danu2;
/* Local variables */
doublereal cdfn, danu;
integer imin, imax;
doublereal term, term0, term1, term2, term3, term4;
integer i;
doublereal dcdfn, dfact;
doublereal amean, u, z;
integer ibran;
doublereal spchi;
doublereal d1, d2, d3, ai;
doublereal sd;
doublereal dw, dx;
integer ievodd;
doublereal chi;
doublereal anu;
doublereal dnu;
doublereal sum;
/* PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION */
/* WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU. */
/* THIS DISTRIBUTION IS DEFINED FOR ALL NON-NEGATIVE X. */
/* THE PROBABILITY DENSITY FUNCTION IS GIVEN */
/* IN THE REFERENCES BELOW. */
/* INPUT ARGUMENTS--X = THE DOUBLE PRECISION VALUE AT */
/* WHICH THE CUMULATIVE DISTRIBUTION */
/* FUNCTION IS TO BE EVALUATED. */
/* X SHOULD BE NON-NEGATIVE. */
/* --NU = THE INTEGER NUMBER OF DEGREES */
/* OF FREEDOM. */
/* NU SHOULD BE POSITIVE. */
/* OUTPUT ARGUMENTS--CDF = THE DOUBLE PRECISION CUMULATIVE */
/* DISTRIBUTION FUNCTION VALUE. */
/* OUTPUT--THE DOUBLE PRECISION CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE CDF FOR THE CHI-SQUARED DISTRIBUTION */
/* WITH DEGREES OF FREEDOM PARAMETER = NU. */
/* PRINTING--NONE UNLESS AN INPUT ARGUMENT ERROR CONDITION EXISTS. */
/* RESTRICTIONS--X SHOULD BE NON-NEGATIVE. */
/* --NU SHOULD BE A POSITIVE INTEGER VARIABLE. */
/* OTHER DATAPAC SUBROUTINES NEEDED--NORCDF. */
/* FORTRAN LIBRARY SUBROUTINES NEEDED--DSQRT, DEXP. */
/* MODE OF INTERNAL OPERATIONS--DOUBLE PRECISION. */
/* LANGUAGE--ANSI FORTRAN. */
/* REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS */
/* SERIES 55, 1964, PAGE 941, FORMULAE 26.4.4 AND 26.4.5.*/
/* --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE */
/* DISTRIBUTIONS--1, 1970, PAGE 176, */
/* FORMULA 28, AND PAGE 180, FORMULA 33.1. */
/* --OWEN, HANDBOOK OF STATISTICAL TABLES, */
/* 1962, PAGES 50-55. */
/* --PEARSON AND HARTLEY, BIOMETRIKA TABLES */
/* FOR STATISTICIANS, VOLUME 1, 1954, */
/* PAGES 122-131. */
/* WRITTEN BY--JAMES J. FILLIBEN */
/* STATISTICAL ENGINEERING LABORATORY (205.03) */
/* NATIONAL BUREAU OF STANDARDS */
/* WASHINGTON, D. C. 20234 */
/* PHONE: 301-921-2315 */
/* ORIGINAL VERSION--JUNE 1972. */
/* UPDATED --MAY 1974. */
/* UPDATED --SEPTEMBER 1975. */
/* UPDATED --NOVEMBER 1975. */
/* UPDATED --OCTOBER 1976. */
/* */
/* --------------------------------------------------------------------- */
/* CHECK THE INPUT ARGUMENTS FOR ERRORS */
if (*nu <= 0) {
fprintf(stderr,"(***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NON-POSITIVE *****)");
fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %ld *****\002)",*nu);
*cdf = 0.0;
return;
}
if (*x < 0.0) {
fprintf(stderr,"(***** NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NEGATIVE *****)");
fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %f *****\002)",*x);
*cdf = 0.0;
return;
}
dx = *x;
anu = (doublereal) (*nu);
dnu = (doublereal) (*nu);
/* IF X IS NON-POSITIVE, SET CDF = 0.0 AND RETURN. */
/* IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/* STANDARD DEVIATIONS BELOW THE MEAN, */
/* SET CDF = 0.0 AND RETURN. */
/* IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/* STANDARD DEVIATIONS BELOW THE MEAN, */
/* SET CDF = 0.0 AND RETURN. */
/* IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/* STANDARD DEVIATIONS ABOVE THE MEAN, */
/* SET CDF = 1.0 AND RETURN. */
/* IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/* STANDARD DEVIATIONS ABOVE THE MEAN, */
/* SET CDF = 1.0 AND RETURN. */
if (*x <= 0.0) {
*cdf = 0.0;
return;
}
amean = anu;
sd = sqrt(anu * 2.0);
z = (*x - amean) / sd;
if (*nu < 10 && z < -200.0) {
*cdf = 0.0;
return;
}
if (*nu >= 10 && z < -100.0) {
*cdf = 0.0;
return;
}
if (*nu < 10 && z > 200.0) {
*cdf = 1.0;
return;
}
if (*nu >= 10 && z > 100.0) {
*cdf = 1.0;
return;
}
/* DISTINGUISH BETWEEN 3 SEPARATE REGIONS */
/* OF THE (X,NU) SPACE. */
/* BRANCH TO THE PROPER COMPUTATIONAL METHOD */
/* DEPENDING ON THE REGION. */
/* NUCUT HAS THE VALUE 1000. */
if (*nu < nucut) {
goto L1000;
}
if (*nu >= nucut && *x <= anu) {
goto L2000;
}
if (*nu >= nucut && *x > anu) {
goto L3000;
}
ibran = 1;
fprintf(stderr,"(*****INTERNAL ERROR IN CHSCDF SUBROUTINE -- IMPOSSIBLE BRANCH CONDITION AT BRANCH POINT %ld)",ibran);
return;
/* TREAT THE SMALL AND MODERATE DEGREES OF FREEDOM CASE */
/* (THAT IS, WHEN NU IS SMALLER THAN 1000). */
/* METHOD UTILIZED--EXACT FINITE SUM */
/* (SEE AMS 55, PAGE 941, FORMULAE 26.4.4 AND 26.4.5). */
L1000:
chi = sqrt(dx);
ievodd = *nu - (*nu / 2 << 1);
if (ievodd == 0) {
sum = 1.;
term = 1.;
imin = 2;
imax = *nu - 2;
}
else {
sum = 0.;
term = 1.0 / chi;
imin = 1;
imax = *nu - 1;
}
if (imin <= imax)
for (i = imin; i <= imax; i += 2) {
ai = (doublereal) i;
term *= dx / ai;
sum += term;
}
sum *= exp(-dx / 2.);
if (ievodd != 0) {
sum *= sqrt(2. / pi);
spchi = chi;
dnorcdf_(&spchi, &cdfn);
dcdfn = cdfn;
sum += (1. - dcdfn) * 2.;
}
*cdf = 1.0 - sum;
if (*cdf < 0.0) *cdf = 0.0;
return;
/* TREAT THE CASE WHEN NU IS LARGE */
/* (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/* AND X IS LESS THAN OR EQUAL TO NU. */
/* METHOD UTILIZED--WILSON-HILFERTY APPROXIMATION */
/* (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 176, FORMULA 28). */
L2000:
dfact = dnu * 4.5;
u = dx / dnu;
u = (pow(u, dpower) - 1.0 + 1.0 / dfact) * sqrt(dfact);
dnorcdf_(&u, &cdfn);
*cdf = cdfn;
return;
/* TREAT THE CASE WHEN NU IS LARGE */
/* (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/* AND X IS LARGER THAN NU. */
/* METHOD UTILIZED--HILL'S ASYMPTOTIC EXPANSION */
/* (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 180, FORMULA 33.1). */
L3000:
dw = sqrt(dx - dnu - dnu * log(dx / dnu));
danu = sqrt(2.0 / dnu);
d1 = dw;
d2 = dw * dw;
d3 = dw * d2;
term0 = dw;
term1 = b11 * danu;
danu2 = danu * danu;
term2 = b21 * d1 * danu2;
term3 = b31 * (d2 + b32) * danu * danu2;
term4 = b41 * (b42 * d3 + b43 * d1) * danu2 * danu2;
u = term0 + term1 + term2 + term3 + term4;
dnorcdf_(&u, &cdfn);
*cdf = cdfn;
} /* dchscdf_ */
/* Subroutine */
static void dnorcdf_(doublereal* x, doublereal* cdf)
{
/* Initialized data */
doublereal b1 = .31938153;
doublereal b2 = -.356563782;
doublereal b3 = 1.781477937;
doublereal b4 = -1.821255978;
doublereal b5 = 1.330274429;
doublereal p = .2316419;
/* System generated locals */
doublereal tt;
/* Local variables */
doublereal t, z;
/* PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE FOR THE NORMAL (GAUSSIAN) */
/* DISTRIBUTION WITH MEAN = 0 AND STANDARD DEVIATION = 1. */
/* THIS DISTRIBUTION IS DEFINED FOR ALL X AND HAS */
/* THE PROBABILITY DENSITY FUNCTION */
/* F(X) = (1/SQRT(2*PI))*EXP(-X*X/2). */
/* INPUT ARGUMENTS--X = THE DOUBLE PRECISION VALUE AT */
/* WHICH THE CUMULATIVE DISTRIBUTION */
/* FUNCTION IS TO BE EVALUATED. */
/* OUTPUT ARGUMENTS--CDF = THE DOUBLE PRECISION CUMULATIVE */
/* DISTRIBUTION FUNCTION VALUE. */
/* OUTPUT--THE DOUBLE PRECISION CUMULATIVE DISTRIBUTION */
/* FUNCTION VALUE CDF. */
/* PRINTING--NONE. */
/* RESTRICTIONS--NONE. */
/* OTHER DATAPAC SUBROUTINES NEEDED--NONE. */
/* FORTRAN LIBRARY SUBROUTINES NEEDED--EXP. */
/* MODE OF INTERNAL OPERATIONS--DOUBLE PRECISION. */
/* LANGUAGE--ANSI FORTRAN. */
/* REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS */
/* SERIES 55, 1964, PAGE 932, FORMULA 26.2.17. */
/* --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE */
/* DISTRIBUTIONS--1, 1970, PAGES 40-111. */
/* WRITTEN BY--JAMES J. FILLIBEN */
/* STATISTICAL ENGINEERING LABORATORY (205.03) */
/* NATIONAL BUREAU OF STANDARDS */
/* WASHINGTON, D. C. 20234 */
/* PHONE: 301-921-2315 */
/* ORIGINAL VERSION--JUNE 1972. */
/* UPDATED --SEPTEMBER 1975. */
/* UPDATED --NOVEMBER 1975. */
/* */
/* --------------------------------------------------------------------- */
/* CHECK THE INPUT ARGUMENTS FOR ERRORS. */
/* NO INPUT ARGUMENT ERRORS POSSIBLE FOR THIS DISTRIBUTION. */
z = *x;
if (z < 0.0)
z = -z;
t = 1.0 / (p * z + 1.0);
tt = t*t;
*cdf = 1.0 - exp(z * -.5 * z) * .39894228040143 * (b1 * t + b2 * tt + b3 * t*tt + b4 * tt*tt + b5 * t*tt*tt);
if (*x < 0.0)
*cdf = 1.0 - *cdf;
if (*cdf < 0.0)
*cdf = 0.0;
} /* dnorcdf_ */
|