File: camsun.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 80,672 kB
  • ctags: 85,253
  • sloc: cpp: 458,133; ansic: 196,222; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 428; csh: 220; perl: 193; xml: 20
file content (613 lines) | stat: -rw-r--r-- 24,436 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#include "v3p_netlib.h"

#undef abs
#undef min
#undef max
#include <math.h>
#include <stdio.h>
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))

extern double sqrt(double), exp(double), pow(double,double), log(double); /* #include <math.h> */

static void norcdf_(real *x, real *cdf);
static void dnorcdf_(doublereal *x, doublereal *cdf);

/* Subroutine */ void chscdf_(real *x, integer *nu, real *cdf)
{
    /* Initialized data */
    integer nucut = 1000;
    doublereal b43 = 17.;
    doublereal pi = 3.14159265358979;
    doublereal dpower = .33333333333333;
    doublereal b11 = .33333333333333;
    doublereal b21 = -.02777777777778;
    doublereal b31 = -6.1728395061e-4;
    doublereal b32 = -13.;
    doublereal b41 = 1.8004115226e-4;
    doublereal b42 = 6.;

    /* Local variables */
    real cdfn;
    integer imin, imax;
    doublereal term, term0, term1, term2, term3, term4;
    integer i;
    doublereal dcdfn, dfact;
    real amean, u, z;
    integer ibran;
    real spchi;
    doublereal d1, d2, d3, ai;
    real sd;
    doublereal dw, dx;
    integer ievodd;
    doublereal chi;
    real anu;
    doublereal danu, danu2, dnu;
    doublereal sum;

/*     PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION     */
/*              FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION          */
/*              WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.          */
/*              THIS DISTRIBUTION IS DEFINED FOR ALL NON-NEGATIVE X.     */
/*              THE PROBABILITY DENSITY FUNCTION IS GIVEN                */
/*              IN THE REFERENCES BELOW.                                 */
/*     INPUT  ARGUMENTS--X      = THE SINGLE PRECISION VALUE AT          */
/*                                WHICH THE CUMULATIVE DISTRIBUTION      */
/*                                FUNCTION IS TO BE EVALUATED.           */
/*                                X SHOULD BE NON-NEGATIVE.              */
/*                     --NU     = THE INTEGER NUMBER OF DEGREES          */
/*                                OF FREEDOM.                            */
/*                                NU SHOULD BE POSITIVE.                 */
/*     OUTPUT ARGUMENTS--CDF    = THE SINGLE PRECISION CUMULATIVE        */
/*                                DISTRIBUTION FUNCTION VALUE.           */
/*     OUTPUT--THE SINGLE PRECISION CUMULATIVE DISTRIBUTION              */
/*             FUNCTION VALUE CDF FOR THE CHI-SQUARED DISTRIBUTION       */
/*             WITH DEGREES OF FREEDOM PARAMETER = NU.                   */
/*     PRINTING--NONE UNLESS AN INPUT ARGUMENT ERROR CONDITION EXISTS.   */
/*     RESTRICTIONS--X SHOULD BE NON-NEGATIVE.                           */
/*                 --NU SHOULD BE A POSITIVE INTEGER VARIABLE.           */
/*     OTHER DATAPAC   SUBROUTINES NEEDED--NORCDF.                       */
/*     FORTRAN LIBRARY SUBROUTINES NEEDED--DSQRT, DEXP.                  */
/*     MODE OF INTERNAL OPERATIONS--DOUBLE PRECISION.                    */
/*     LANGUAGE--ANSI FORTRAN.                                           */
/*     REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS      */
/*                 SERIES 55, 1964, PAGE 941, FORMULAE 26.4.4 AND 26.4.5.*/
/*               --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE               */
/*                 DISTRIBUTIONS--1, 1970, PAGE 176,                     */
/*                 FORMULA 28, AND PAGE 180, FORMULA 33.1.               */
/*               --OWEN, HANDBOOK OF STATISTICAL TABLES,                 */
/*                 1962, PAGES 50-55.                                    */
/*               --PEARSON AND HARTLEY, BIOMETRIKA TABLES                */
/*                 FOR STATISTICIANS, VOLUME 1, 1954,                    */
/*                 PAGES 122-131.                                        */
/*     WRITTEN BY--JAMES J. FILLIBEN                                     */
/*                 STATISTICAL ENGINEERING LABORATORY (205.03)           */
/*                 NATIONAL BUREAU OF STANDARDS                          */
/*                 WASHINGTON, D. C. 20234                               */
/*                 PHONE:  301-921-2315                                  */
/*     ORIGINAL VERSION--JUNE      1972.                                 */
/*     UPDATED         --MAY       1974.                                 */
/*     UPDATED         --SEPTEMBER 1975.                                 */
/*     UPDATED         --NOVEMBER  1975.                                 */
/*     UPDATED         --OCTOBER   1976.                                 */
/*                                                                       */
/* --------------------------------------------------------------------- */

/*     CHECK THE INPUT ARGUMENTS FOR ERRORS */

    if (*nu <= 0) {
        fprintf(stderr,"(***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NON-POSITIVE *****)");
        fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %ld *****\002)",*nu);
        *cdf = 0.f;
        return;
    }
    if (*x < 0.f) {
        fprintf(stderr,"(***** NON-FATAL DIAGNOSTIC--THE FIRST  INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NEGATIVE *****)");
        fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %f *****\002)",*x);
        *cdf = 0.f;
        return;
    }

    dx = *x;
    anu = (real) (*nu);
    dnu = (doublereal) (*nu);

/*     IF X IS NON-POSITIVE, SET CDF = 0.0 AND RETURN. */
/*     IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/*     STANDARD DEVIATIONS BELOW THE MEAN, */
/*     SET CDF = 0.0 AND RETURN. */
/*     IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/*     STANDARD DEVIATIONS BELOW THE MEAN, */
/*     SET CDF = 0.0 AND RETURN. */
/*     IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/*     STANDARD DEVIATIONS ABOVE THE MEAN, */
/*     SET CDF = 1.0 AND RETURN. */
/*     IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/*     STANDARD DEVIATIONS ABOVE THE MEAN, */
/*     SET CDF = 1.0 AND RETURN. */

    if (*x <= 0.f) {
        *cdf = 0.f;
        return;
    }
    amean = anu;
    sd = (float)sqrt(anu * 2.f);
    z = (*x - amean) / sd;
    if (*nu < 10 && z < -200.f) {
        *cdf = 0.f;
        return;
    }
    if (*nu >= 10 && z < -100.f) {
        *cdf = 0.f;
        return;
    }
    if (*nu < 10 && z > 200.f) {
        *cdf = 1.f;
        return;
    }
    if (*nu >= 10 && z > 100.f) {
        *cdf = 1.f;
        return;
    }

/*     DISTINGUISH BETWEEN 3 SEPARATE REGIONS */
/*     OF THE (X,NU) SPACE. */
/*     BRANCH TO THE PROPER COMPUTATIONAL METHOD */
/*     DEPENDING ON THE REGION. */
/*     NUCUT HAS THE VALUE 1000. */

    if (*nu < nucut) {
        goto L1000;
    }
    if (*nu >= nucut && *x <= anu) {
        goto L2000;
    }
    if (*nu >= nucut && *x > anu) {
        goto L3000;
    }
    ibran = 1;
    fprintf(stderr,"(*****INTERNAL ERROR IN CHSCDF SUBROUTINE -- IMPOSSIBLE BRANCH CONDITION AT BRANCH POINT %ld)",ibran);
    return;

/*     TREAT THE SMALL AND MODERATE DEGREES OF FREEDOM CASE */
/*     (THAT IS, WHEN NU IS SMALLER THAN 1000). */
/*     METHOD UTILIZED--EXACT FINITE SUM */
/*     (SEE AMS 55, PAGE 941, FORMULAE 26.4.4 AND 26.4.5). */

L1000:
    chi = sqrt(dx);
    ievodd = *nu - (*nu / 2 << 1);
    if (ievodd == 0) {
        sum = 1.;
        term = 1.;
        imin = 2;
        imax = *nu - 2;
    }
    else {
        sum = 0.;
        term = 1.f / chi;
        imin = 1;
        imax = *nu - 1;
    }
    if (imin <= imax)
    for (i = imin; i <= imax; i += 2) {
        ai = (doublereal) i;
        term *= dx / ai;
        sum += term;
    }

    sum *= exp(-dx / 2.);
    if (ievodd != 0) {
        sum *= sqrt(2. / pi);
        spchi = (float)chi;
        norcdf_(&spchi, &cdfn);
        dcdfn = cdfn;
        sum += (1. - dcdfn) * 2.;
    }
    *cdf = 1.f - (float)sum;
    return;

/*     TREAT THE CASE WHEN NU IS LARGE */
/*     (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/*     AND X IS LESS THAN OR EQUAL TO NU. */
/*     METHOD UTILIZED--WILSON-HILFERTY APPROXIMATION */
/*     (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 176, FORMULA 28). */

L2000:
    dfact = dnu * 4.5;
    u = (float)(dx / dnu);
    u = (float)((pow(u, dpower) - 1.0 + 1.0 / dfact) * sqrt(dfact));
    norcdf_(&u, &cdfn);
    *cdf = cdfn;
    return;

/*     TREAT THE CASE WHEN NU IS LARGE */
/*     (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/*     AND X IS LARGER THAN NU. */
/*     METHOD UTILIZED--HILL'S ASYMPTOTIC EXPANSION */
/*     (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 180, FORMULA 33.1). */

L3000:
    dw = sqrt(dx - dnu - dnu * log(dx / dnu));
    danu = sqrt(2.0 / dnu);
    d1 = dw;
    d2 = dw * dw;
    d3 = dw * d2;
    term0 = dw;
    term1 = b11 * danu;
    danu2 = danu * danu;
    term2 = b21 * d1 * danu2;
    term3 = b31 * (d2 + b32) * danu * danu2;
    term4 = b41 * (b42 * d3 + b43 * d1) * danu2 * danu2;
    u = (float)(term0 + term1 + term2 + term3 + term4);
    norcdf_(&u, &cdfn);
    *cdf = cdfn;
} /* chscdf_ */

/* Subroutine */
static void norcdf_(real *x, real *cdf)
{
    /* Initialized data */
    real b1 = .31938153f;
    real b2 = -.356563782f;
    real b3 = 1.781477937f;
    real b4 = -1.821255978f;
    real b5 = 1.330274429f;
    real p = .2316419f;

    /* System generated locals */
    real tt;

    /* Local variables */
    real t, z;

/*     PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION     */
/*              FUNCTION VALUE FOR THE NORMAL (GAUSSIAN)                 */
/*              DISTRIBUTION WITH MEAN = 0 AND STANDARD DEVIATION = 1.   */
/*              THIS DISTRIBUTION IS DEFINED FOR ALL X AND HAS           */
/*              THE PROBABILITY DENSITY FUNCTION                         */
/*              F(X) = (1/SQRT(2*PI))*EXP(-X*X/2).                       */
/*     INPUT  ARGUMENTS--X      = THE SINGLE PRECISION VALUE AT          */
/*                                WHICH THE CUMULATIVE DISTRIBUTION      */
/*                                FUNCTION IS TO BE EVALUATED.           */
/*     OUTPUT ARGUMENTS--CDF    = THE SINGLE PRECISION CUMULATIVE        */
/*                                DISTRIBUTION FUNCTION VALUE.           */
/*     OUTPUT--THE SINGLE PRECISION CUMULATIVE DISTRIBUTION              */
/*             FUNCTION VALUE CDF.                                       */
/*     PRINTING--NONE.                                                   */
/*     RESTRICTIONS--NONE.                                               */
/*     OTHER DATAPAC   SUBROUTINES NEEDED--NONE.                         */
/*     FORTRAN LIBRARY SUBROUTINES NEEDED--EXP.                          */
/*     MODE OF INTERNAL OPERATIONS--SINGLE PRECISION.                    */
/*     LANGUAGE--ANSI FORTRAN.                                           */
/*     REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS      */
/*                 SERIES 55, 1964, PAGE 932, FORMULA 26.2.17.           */
/*               --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE               */
/*                 DISTRIBUTIONS--1, 1970, PAGES 40-111.                 */
/*     WRITTEN BY--JAMES J. FILLIBEN                                     */
/*                 STATISTICAL ENGINEERING LABORATORY (205.03)           */
/*                 NATIONAL BUREAU OF STANDARDS                          */
/*                 WASHINGTON, D. C. 20234                               */
/*                 PHONE:  301-921-2315                                  */
/*     ORIGINAL VERSION--JUNE      1972.                                 */
/*     UPDATED         --SEPTEMBER 1975.                                 */
/*     UPDATED         --NOVEMBER  1975.                                 */
/*                                                                       */
/* --------------------------------------------------------------------- */

/*     CHECK THE INPUT ARGUMENTS FOR ERRORS. */
/*     NO INPUT ARGUMENT ERRORS POSSIBLE FOR THIS DISTRIBUTION. */

    z = *x;
    if (z < 0.f)
        z = -z;
    t = 1.f / (p * z + 1.f);
    tt = t*t;
    *cdf = 1.f - (float)exp(z * -.5f * z) * .39894228040143f * (b1 * t + b2 * tt + b3 * t*tt + b4 * tt*tt + b5 * t*tt*tt);
    if (*x < 0.f) {
        *cdf = 1.f - *cdf;
    }
} /* norcdf_ */

/* Subroutine */ void dchscdf_(doublereal* x, integer* nu, doublereal* cdf)
{
    /* Initialized data */
    integer nucut = 1000;
    doublereal b43 = 17.;
    doublereal pi = 3.14159265358979;
    doublereal dpower = .333333333333333333;
    doublereal b11 = .333333333333333333;
    doublereal b21 = -.027777777777777778;
    doublereal b31 = -6.1728395061e-4;
    doublereal b32 = -13.;
    doublereal b41 = 1.8004115226e-4;
    doublereal b42 = 6.;

    /* System generated locals */
    doublereal danu2;

    /* Local variables */
    doublereal cdfn, danu;
    integer imin, imax;
    doublereal term, term0, term1, term2, term3, term4;
    integer i;
    doublereal dcdfn, dfact;
    doublereal amean, u, z;
    integer ibran;
    doublereal spchi;
    doublereal d1, d2, d3, ai;
    doublereal sd;
    doublereal dw, dx;
    integer ievodd;
    doublereal chi;
    doublereal anu;
    doublereal dnu;
    doublereal sum;

/*     PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION     */
/*              FUNCTION VALUE FOR THE CHI-SQUARED DISTRIBUTION          */
/*              WITH INTEGER DEGREES OF FREEDOM PARAMETER = NU.          */
/*              THIS DISTRIBUTION IS DEFINED FOR ALL NON-NEGATIVE X.     */
/*              THE PROBABILITY DENSITY FUNCTION IS GIVEN                */
/*              IN THE REFERENCES BELOW.                                 */
/*     INPUT  ARGUMENTS--X      = THE DOUBLE PRECISION VALUE AT          */
/*                                WHICH THE CUMULATIVE DISTRIBUTION      */
/*                                FUNCTION IS TO BE EVALUATED.           */
/*                                X SHOULD BE NON-NEGATIVE.              */
/*                     --NU     = THE INTEGER NUMBER OF DEGREES          */
/*                                OF FREEDOM.                            */
/*                                NU SHOULD BE POSITIVE.                 */
/*     OUTPUT ARGUMENTS--CDF    = THE DOUBLE PRECISION CUMULATIVE        */
/*                                DISTRIBUTION FUNCTION VALUE.           */
/*     OUTPUT--THE DOUBLE PRECISION CUMULATIVE DISTRIBUTION              */
/*             FUNCTION VALUE CDF FOR THE CHI-SQUARED DISTRIBUTION       */
/*             WITH DEGREES OF FREEDOM PARAMETER = NU.                   */
/*     PRINTING--NONE UNLESS AN INPUT ARGUMENT ERROR CONDITION EXISTS.   */
/*     RESTRICTIONS--X SHOULD BE NON-NEGATIVE.                           */
/*                 --NU SHOULD BE A POSITIVE INTEGER VARIABLE.           */
/*     OTHER DATAPAC   SUBROUTINES NEEDED--NORCDF.                       */
/*     FORTRAN LIBRARY SUBROUTINES NEEDED--DSQRT, DEXP.                  */
/*     MODE OF INTERNAL OPERATIONS--DOUBLE PRECISION.                    */
/*     LANGUAGE--ANSI FORTRAN.                                           */
/*     REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS      */
/*                 SERIES 55, 1964, PAGE 941, FORMULAE 26.4.4 AND 26.4.5.*/
/*               --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE               */
/*                 DISTRIBUTIONS--1, 1970, PAGE 176,                     */
/*                 FORMULA 28, AND PAGE 180, FORMULA 33.1.               */
/*               --OWEN, HANDBOOK OF STATISTICAL TABLES,                 */
/*                 1962, PAGES 50-55.                                    */
/*               --PEARSON AND HARTLEY, BIOMETRIKA TABLES                */
/*                 FOR STATISTICIANS, VOLUME 1, 1954,                    */
/*                 PAGES 122-131.                                        */
/*     WRITTEN BY--JAMES J. FILLIBEN                                     */
/*                 STATISTICAL ENGINEERING LABORATORY (205.03)           */
/*                 NATIONAL BUREAU OF STANDARDS                          */
/*                 WASHINGTON, D. C. 20234                               */
/*                 PHONE:  301-921-2315                                  */
/*     ORIGINAL VERSION--JUNE      1972.                                 */
/*     UPDATED         --MAY       1974.                                 */
/*     UPDATED         --SEPTEMBER 1975.                                 */
/*     UPDATED         --NOVEMBER  1975.                                 */
/*     UPDATED         --OCTOBER   1976.                                 */
/*                                                                       */
/* --------------------------------------------------------------------- */

/*     CHECK THE INPUT ARGUMENTS FOR ERRORS */

    if (*nu <= 0) {
        fprintf(stderr,"(***** FATAL ERROR--THE SECOND INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NON-POSITIVE *****)");
        fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %ld *****\002)",*nu);
        *cdf = 0.0;
        return;
    }
    if (*x < 0.0) {
        fprintf(stderr,"(***** NON-FATAL DIAGNOSTIC--THE FIRST  INPUT ARGUMENT TO THE CHSCDF SUBROUTINE IS NEGATIVE *****)");
        fprintf(stderr,"(***** THE VALUE OF THE ARGUMENT IS %f *****\002)",*x);
        *cdf = 0.0;
        return;
    }

    dx = *x;
    anu = (doublereal) (*nu);
    dnu = (doublereal) (*nu);

/*     IF X IS NON-POSITIVE, SET CDF = 0.0 AND RETURN. */
/*     IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/*     STANDARD DEVIATIONS BELOW THE MEAN, */
/*     SET CDF = 0.0 AND RETURN. */
/*     IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/*     STANDARD DEVIATIONS BELOW THE MEAN, */
/*     SET CDF = 0.0 AND RETURN. */
/*     IF NU IS SMALLER THAN 10 AND X IS MORE THAN 200 */
/*     STANDARD DEVIATIONS ABOVE THE MEAN, */
/*     SET CDF = 1.0 AND RETURN. */
/*     IF NU IS 10 OR LARGER AND X IS MORE THAN 100 */
/*     STANDARD DEVIATIONS ABOVE THE MEAN, */
/*     SET CDF = 1.0 AND RETURN. */

    if (*x <= 0.0) {
        *cdf = 0.0;
        return;
    }
    amean = anu;
    sd = sqrt(anu * 2.0);
    z = (*x - amean) / sd;
    if (*nu < 10 && z < -200.0) {
        *cdf = 0.0;
        return;
    }
    if (*nu >= 10 && z < -100.0) {
        *cdf = 0.0;
        return;
    }
    if (*nu < 10 && z > 200.0) {
        *cdf = 1.0;
        return;
    }
    if (*nu >= 10 && z > 100.0) {
        *cdf = 1.0;
        return;
    }

/*     DISTINGUISH BETWEEN 3 SEPARATE REGIONS */
/*     OF THE (X,NU) SPACE. */
/*     BRANCH TO THE PROPER COMPUTATIONAL METHOD */
/*     DEPENDING ON THE REGION. */
/*     NUCUT HAS THE VALUE 1000. */

    if (*nu < nucut) {
        goto L1000;
    }
    if (*nu >= nucut && *x <= anu) {
        goto L2000;
    }
    if (*nu >= nucut && *x > anu) {
        goto L3000;
    }
    ibran = 1;
    fprintf(stderr,"(*****INTERNAL ERROR IN CHSCDF SUBROUTINE -- IMPOSSIBLE BRANCH CONDITION AT BRANCH POINT %ld)",ibran);
    return;

/*     TREAT THE SMALL AND MODERATE DEGREES OF FREEDOM CASE */
/*     (THAT IS, WHEN NU IS SMALLER THAN 1000). */
/*     METHOD UTILIZED--EXACT FINITE SUM */
/*     (SEE AMS 55, PAGE 941, FORMULAE 26.4.4 AND 26.4.5). */

L1000:
    chi = sqrt(dx);
    ievodd = *nu - (*nu / 2 << 1);
    if (ievodd == 0) {
        sum = 1.;
        term = 1.;
        imin = 2;
        imax = *nu - 2;
    }
    else {
        sum = 0.;
        term = 1.0 / chi;
        imin = 1;
        imax = *nu - 1;
    }
    if (imin <= imax)
    for (i = imin; i <= imax; i += 2) {
        ai = (doublereal) i;
        term *= dx / ai;
        sum += term;
    }

    sum *= exp(-dx / 2.);
    if (ievodd != 0) {
        sum *= sqrt(2. / pi);
        spchi = chi;
        dnorcdf_(&spchi, &cdfn);
        dcdfn = cdfn;
        sum += (1. - dcdfn) * 2.;
    }
    *cdf = 1.0 - sum;
    if (*cdf < 0.0) *cdf = 0.0;
    return;

/*     TREAT THE CASE WHEN NU IS LARGE */
/*     (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/*     AND X IS LESS THAN OR EQUAL TO NU. */
/*     METHOD UTILIZED--WILSON-HILFERTY APPROXIMATION */
/*     (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 176, FORMULA 28). */

L2000:
    dfact = dnu * 4.5;
    u = dx / dnu;
    u = (pow(u, dpower) - 1.0 + 1.0 / dfact) * sqrt(dfact);
    dnorcdf_(&u, &cdfn);
    *cdf = cdfn;
    return;

/*     TREAT THE CASE WHEN NU IS LARGE */
/*     (THAT IS, WHEN NU IS EQUAL TO OR GREATER THAN 1000) */
/*     AND X IS LARGER THAN NU. */
/*     METHOD UTILIZED--HILL'S ASYMPTOTIC EXPANSION */
/*     (SEE JOHNSON AND KOTZ, VOLUME 1, PAGE 180, FORMULA 33.1). */

L3000:
    dw = sqrt(dx - dnu - dnu * log(dx / dnu));
    danu = sqrt(2.0 / dnu);
    d1 = dw;
    d2 = dw * dw;
    d3 = dw * d2;
    term0 = dw;
    term1 = b11 * danu;
    danu2 = danu * danu;
    term2 = b21 * d1 * danu2;
    term3 = b31 * (d2 + b32) * danu * danu2;
    term4 = b41 * (b42 * d3 + b43 * d1) * danu2 * danu2;
    u = term0 + term1 + term2 + term3 + term4;
    dnorcdf_(&u, &cdfn);
    *cdf = cdfn;
} /* dchscdf_ */

/* Subroutine */
static void dnorcdf_(doublereal* x, doublereal* cdf)
{
    /* Initialized data */
    doublereal b1 = .31938153;
    doublereal b2 = -.356563782;
    doublereal b3 = 1.781477937;
    doublereal b4 = -1.821255978;
    doublereal b5 = 1.330274429;
    doublereal p = .2316419;

    /* System generated locals */
    doublereal tt;

    /* Local variables */
    doublereal t, z;


/*     PURPOSE--THIS SUBROUTINE COMPUTES THE CUMULATIVE DISTRIBUTION     */
/*              FUNCTION VALUE FOR THE NORMAL (GAUSSIAN)                 */
/*              DISTRIBUTION WITH MEAN = 0 AND STANDARD DEVIATION = 1.   */
/*              THIS DISTRIBUTION IS DEFINED FOR ALL X AND HAS           */
/*              THE PROBABILITY DENSITY FUNCTION                         */
/*              F(X) = (1/SQRT(2*PI))*EXP(-X*X/2).                       */
/*     INPUT  ARGUMENTS--X      = THE DOUBLE PRECISION VALUE AT          */
/*                                WHICH THE CUMULATIVE DISTRIBUTION      */
/*                                FUNCTION IS TO BE EVALUATED.           */
/*     OUTPUT ARGUMENTS--CDF    = THE DOUBLE PRECISION CUMULATIVE        */
/*                                DISTRIBUTION FUNCTION VALUE.           */
/*     OUTPUT--THE DOUBLE PRECISION CUMULATIVE DISTRIBUTION              */
/*             FUNCTION VALUE CDF.                                       */
/*     PRINTING--NONE.                                                   */
/*     RESTRICTIONS--NONE.                                               */
/*     OTHER DATAPAC   SUBROUTINES NEEDED--NONE.                         */
/*     FORTRAN LIBRARY SUBROUTINES NEEDED--EXP.                          */
/*     MODE OF INTERNAL OPERATIONS--DOUBLE PRECISION.                    */
/*     LANGUAGE--ANSI FORTRAN.                                           */
/*     REFERENCES--NATIONAL BUREAU OF STANDARDS APPLIED MATHEMATICS      */
/*                 SERIES 55, 1964, PAGE 932, FORMULA 26.2.17.           */
/*               --JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE               */
/*                 DISTRIBUTIONS--1, 1970, PAGES 40-111.                 */
/*     WRITTEN BY--JAMES J. FILLIBEN                                     */
/*                 STATISTICAL ENGINEERING LABORATORY (205.03)           */
/*                 NATIONAL BUREAU OF STANDARDS                          */
/*                 WASHINGTON, D. C. 20234                               */
/*                 PHONE:  301-921-2315                                  */
/*     ORIGINAL VERSION--JUNE      1972.                                 */
/*     UPDATED         --SEPTEMBER 1975.                                 */
/*     UPDATED         --NOVEMBER  1975.                                 */
/*                                                                       */
/* --------------------------------------------------------------------- */

/*     CHECK THE INPUT ARGUMENTS FOR ERRORS. */
/*     NO INPUT ARGUMENT ERRORS POSSIBLE FOR THIS DISTRIBUTION. */

    z = *x;
    if (z < 0.0)
        z = -z;
    t = 1.0 / (p * z + 1.0);
    tt = t*t;
    *cdf = 1.0 - exp(z * -.5 * z) * .39894228040143 * (b1 * t + b2 * tt + b3 * t*tt + b4 * tt*tt + b5 * t*tt*tt);
    if (*x < 0.0)
        *cdf = 1.0 - *cdf;
    if (*cdf < 0.0)
        *cdf = 0.0;
} /* dnorcdf_ */