1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/* minpack/qrfac.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa) >*/
/* Subroutine */ int qrfac_(integer *m, integer *n, doublereal *a, integer *
lda, logical *pivot, integer *ipvt, integer *lipvt, doublereal *rdiag,
doublereal *acnorm, doublereal *wa)
{
/* Initialized data */
static doublereal one = 1.; /* constant */
static doublereal p05 = .05; /* constant */
static doublereal zero = 0.; /* constant */
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, jp1;
doublereal sum;
integer kmax;
doublereal temp;
integer minmn;
extern doublereal enorm_(integer *, doublereal *);
doublereal epsmch;
extern doublereal dpmpar_(integer *);
doublereal ajnorm;
(void)lipvt;
/*< integer m,n,lda,lipvt >*/
/*< integer ipvt(lipvt) >*/
/*< logical pivot >*/
/*< double precision a(lda,n),rdiag(n),acnorm(n),wa(n) >*/
/* ********** */
/* subroutine qrfac */
/* this subroutine uses householder transformations with column */
/* pivoting (optional) to compute a qr factorization of the */
/* m by n matrix a. that is, qrfac determines an orthogonal */
/* matrix q, a permutation matrix p, and an upper trapezoidal */
/* matrix r with diagonal elements of nonincreasing magnitude, */
/* such that a*p = q*r. the householder transformation for */
/* column k, k = 1,2,...,min(m,n), is of the form */
/* t */
/* i - (1/u(k))*u*u */
/* where u has zeros in the first k-1 positions. the form of */
/* this transformation and the method of pivoting first */
/* appeared in the corresponding linpack subroutine. */
/* the subroutine statement is */
/* subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa) */
/* where */
/* m is a positive integer input variable set to the number */
/* of rows of a. */
/* n is a positive integer input variable set to the number */
/* of columns of a. */
/* a is an m by n array. on input a contains the matrix for */
/* which the qr factorization is to be computed. on output */
/* the strict upper trapezoidal part of a contains the strict */
/* upper trapezoidal part of r, and the lower trapezoidal */
/* part of a contains a factored form of q (the non-trivial */
/* elements of the u vectors described above). */
/* lda is a positive integer input variable not less than m */
/* which specifies the leading dimension of the array a. */
/* pivot is a logical input variable. if pivot is set true, */
/* then column pivoting is enforced. if pivot is set false, */
/* then no column pivoting is done. */
/* ipvt is an integer output array of length lipvt. ipvt */
/* defines the permutation matrix p such that a*p = q*r. */
/* column j of p is column ipvt(j) of the identity matrix. */
/* if pivot is false, ipvt is not referenced. */
/* lipvt is a positive integer input variable. if pivot is false, */
/* then lipvt may be as small as 1. if pivot is true, then */
/* lipvt must be at least n. */
/* rdiag is an output array of length n which contains the */
/* diagonal elements of r. */
/* acnorm is an output array of length n which contains the */
/* norms of the corresponding columns of the input matrix a. */
/* if this information is not needed, then acnorm can coincide */
/* with rdiag. */
/* wa is a work array of length n. if pivot is false, then wa */
/* can coincide with rdiag. */
/* subprograms called */
/* minpack-supplied ... dpmpar,enorm */
/* fortran-supplied ... dmax1,dsqrt,min0 */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/*< integer i,j,jp1,k,kmax,minmn >*/
/*< double precision ajnorm,epsmch,one,p05,sum,temp,zero >*/
/*< double precision dpmpar,enorm >*/
/*< data one,p05,zero /1.0d0,5.0d-2,0.0d0/ >*/
/* Parameter adjustments */
--wa;
--acnorm;
--rdiag;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipvt;
/* Function Body */
/* epsmch is the machine precision. */
/*< epsmch = dpmpar(1) >*/
epsmch = dpmpar_(&c__1);
/* compute the initial column norms and initialize several arrays. */
/*< do 10 j = 1, n >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< acnorm(j) = enorm(m,a(1,j)) >*/
acnorm[j] = enorm_(m, &a[j * a_dim1 + 1]);
/*< rdiag(j) = acnorm(j) >*/
rdiag[j] = acnorm[j];
/*< wa(j) = rdiag(j) >*/
wa[j] = rdiag[j];
/*< if (pivot) ipvt(j) = j >*/
if (*pivot) {
ipvt[j] = j;
}
/*< 10 continue >*/
/* L10: */
}
/* reduce a to r with householder transformations. */
/*< minmn = min0(m,n) >*/
minmn = min(*m,*n);
/*< do 110 j = 1, minmn >*/
i__1 = minmn;
for (j = 1; j <= i__1; ++j) {
/*< if (.not.pivot) go to 40 >*/
if (! (*pivot)) {
goto L40;
}
/* bring the column of largest norm into the pivot position. */
/*< kmax = j >*/
kmax = j;
/*< do 20 k = j, n >*/
i__2 = *n;
for (k = j; k <= i__2; ++k) {
/*< if (rdiag(k) .gt. rdiag(kmax)) kmax = k >*/
if (rdiag[k] > rdiag[kmax]) {
kmax = k;
}
/*< 20 continue >*/
/* L20: */
}
/*< if (kmax .eq. j) go to 40 >*/
if (kmax == j) {
goto L40;
}
/*< do 30 i = 1, m >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< temp = a(i,j) >*/
temp = a[i__ + j * a_dim1];
/*< a(i,j) = a(i,kmax) >*/
a[i__ + j * a_dim1] = a[i__ + kmax * a_dim1];
/*< a(i,kmax) = temp >*/
a[i__ + kmax * a_dim1] = temp;
/*< 30 continue >*/
/* L30: */
}
/*< rdiag(kmax) = rdiag(j) >*/
rdiag[kmax] = rdiag[j];
/*< wa(kmax) = wa(j) >*/
wa[kmax] = wa[j];
/*< k = ipvt(j) >*/
k = ipvt[j];
/*< ipvt(j) = ipvt(kmax) >*/
ipvt[j] = ipvt[kmax];
/*< ipvt(kmax) = k >*/
ipvt[kmax] = k;
/*< 40 continue >*/
L40:
/* compute the householder transformation to reduce the */
/* j-th column of a to a multiple of the j-th unit vector. */
/*< ajnorm = enorm(m-j+1,a(j,j)) >*/
i__2 = *m - j + 1;
ajnorm = enorm_(&i__2, &a[j + j * a_dim1]);
/*< if (ajnorm .eq. zero) go to 100 >*/
if (ajnorm == zero) {
goto L100;
}
/*< if (a(j,j) .lt. zero) ajnorm = -ajnorm >*/
if (a[j + j * a_dim1] < zero) {
ajnorm = -ajnorm;
}
/*< do 50 i = j, m >*/
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
/*< a(i,j) = a(i,j)/ajnorm >*/
a[i__ + j * a_dim1] /= ajnorm;
/*< 50 continue >*/
/* L50: */
}
/*< a(j,j) = a(j,j) + one >*/
a[j + j * a_dim1] += one;
/* apply the transformation to the remaining columns */
/* and update the norms. */
/*< jp1 = j + 1 >*/
jp1 = j + 1;
/*< if (n .lt. jp1) go to 100 >*/
if (*n < jp1) {
goto L100;
}
/*< do 90 k = jp1, n >*/
i__2 = *n;
for (k = jp1; k <= i__2; ++k) {
/*< sum = zero >*/
sum = zero;
/*< do 60 i = j, m >*/
i__3 = *m;
for (i__ = j; i__ <= i__3; ++i__) {
/*< sum = sum + a(i,j)*a(i,k) >*/
sum += a[i__ + j * a_dim1] * a[i__ + k * a_dim1];
/*< 60 continue >*/
/* L60: */
}
/*< temp = sum/a(j,j) >*/
temp = sum / a[j + j * a_dim1];
/*< do 70 i = j, m >*/
i__3 = *m;
for (i__ = j; i__ <= i__3; ++i__) {
/*< a(i,k) = a(i,k) - temp*a(i,j) >*/
a[i__ + k * a_dim1] -= temp * a[i__ + j * a_dim1];
/*< 70 continue >*/
/* L70: */
}
/*< if (.not.pivot .or. rdiag(k) .eq. zero) go to 80 >*/
if (! (*pivot) || rdiag[k] == zero) {
goto L80;
}
/*< temp = a(j,k)/rdiag(k) >*/
temp = a[j + k * a_dim1] / rdiag[k];
/*< rdiag(k) = rdiag(k)*dsqrt(dmax1(zero,one-temp**2)) >*/
/* Computing MAX */
/* Computing 2nd power */
d__3 = temp;
d__1 = zero, d__2 = one - d__3 * d__3;
rdiag[k] *= sqrt((max(d__1,d__2)));
/*< if (p05*(rdiag(k)/wa(k))**2 .gt. epsmch) go to 80 >*/
/* Computing 2nd power */
d__1 = rdiag[k] / wa[k];
if (p05 * (d__1 * d__1) > epsmch) {
goto L80;
}
/*< rdiag(k) = enorm(m-j,a(jp1,k)) >*/
i__3 = *m - j;
rdiag[k] = enorm_(&i__3, &a[jp1 + k * a_dim1]);
/*< wa(k) = rdiag(k) >*/
wa[k] = rdiag[k];
/*< 80 continue >*/
L80:
/*< 90 continue >*/
/* L90: */
;
}
/*< 100 continue >*/
L100:
/*< rdiag(j) = -ajnorm >*/
rdiag[j] = -ajnorm;
/*< 110 continue >*/
/* L110: */
}
/*< return >*/
return 0;
/* last card of subroutine qrfac. */
/*< end >*/
} /* qrfac_ */
#ifdef __cplusplus
}
#endif
|