File: itkBayesianClassifierInitializationImageFilter.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (192 lines) | stat: -rw-r--r-- 8,322 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkBayesianClassifierInitializationImageFilter.h,v $
  Language:  C++
  Date:      $Date: 2007-04-20 13:36:35 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkBayesianClassifierInitializationImageFilter_h
#define __itkBayesianClassifierInitializationImageFilter_h

#include "itkVectorImage.h"
#include "itkVectorContainer.h"
#include "itkImageToImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkDensityFunction.h"

namespace itk
{
  
/** \class BayesianClassifierInitializationImageFilter
 *
 * \brief This filter is intended to be used as a helper class to 
 * initialize the BayesianClassifierImageFilter. The goal of this filter 
 * is to generate a membership image that indicates the membership of each 
 * pixel to each class. These membership images are fed as input to the 
 * bayesian classfier filter.  
 *
 * \par Parameters
 * Number of classes: This defines the number of classes, which will determine
 * the number of membership images that will be generated. The user must specify
 * this.
 *
 * \par
 * Membership functions: The user can optionally plugin in any membership function. 
 * The number of membership functions plugged in should be the
 * same as the number of classes. If the user does not supply membership 
 * functions, the filter will generate membership functions for you. These
 * functions are Gaussian density functions centered around 'n' pixel intensity 
 * values, \f$ I_k \f$. These 'n' values are obtained by running K-means on the 
 * image. In other words, the default behaviour of the filter is to generate
 * gaussian mixture model for the input image.
 *
 * \par Inputs and Outputs
 * The filter takes a scalar Image as input and generates a VectorImage, each
 * component \f$ c \f$ of which represents memberships of each pixel to the 
 * class \f$ c \f$.
 * 
 * \par Template parameters
 * This filter is templated over the input image type and the data type used
 * to represent the probabilities (defaults to float).
 * 
 * \author John Melonakos, Georgia Tech
 *
 * \note
 * This work is part of the National Alliance for Medical Image Computing 
 * (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
 * for Medical Research, Grant U54 EB005149.
 * 
 * \sa BayesianClassifierImageFilter
 * \sa VectorImage
 * \ingroup ClassificationFilters 
 */
template< class TInputImage, class TProbabilityPrecisionType=float >
class ITK_EXPORT BayesianClassifierInitializationImageFilter :
    public
ImageToImageFilter<TInputImage, VectorImage< TProbabilityPrecisionType, 
                  ::itk::GetImageDimension< TInputImage >::ImageDimension > >
{
public:
  /** Standard class typedefs. */
  typedef BayesianClassifierInitializationImageFilter  Self;
  typedef TInputImage                                  InputImageType;
  typedef TProbabilityPrecisionType                    ProbabilityPrecisionType;
  
  /** Dimension of the input image */
  itkStaticConstMacro( Dimension, unsigned int, 
                     ::itk::GetImageDimension< InputImageType >::ImageDimension );

  typedef VectorImage< ProbabilityPrecisionType, 
          itkGetStaticConstMacro(Dimension) >                   OutputImageType;
  typedef ImageToImageFilter< InputImageType, OutputImageType > Superclass;
  typedef SmartPointer<Self>                                    Pointer;
  typedef SmartPointer<const Self>                              ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(BayesianClassifierInitializationImageFilter, ImageToImageFilter);

  /** Input image iterators */
  typedef ImageRegionConstIterator< InputImageType > InputImageIteratorType;

  /** Pixel types. */
  typedef typename InputImageType::PixelType  InputPixelType;
  typedef typename OutputImageType::PixelType OutputPixelType;

  /** Image Type and Pixel type for the images representing the membership of a
   *  pixel to a particular class. This image has arrays as pixels, the number of 
   *  elements in the array is the same as the number of classes to be used.    */
  typedef VectorImage< ProbabilityPrecisionType, 
          itkGetStaticConstMacro(Dimension) >             MembershipImageType;
  typedef typename MembershipImageType::PixelType         MembershipPixelType;
  typedef typename MembershipImageType::Pointer           MembershipImagePointer;
  typedef ImageRegionIterator< MembershipImageType >      MembershipImageIteratorType;

  /** Type of the Measurement */
  typedef Vector< InputPixelType, 1 >                     MeasurementVectorType;

  /** Type of the density functions */
  typedef Statistics::DensityFunction< MeasurementVectorType >
                                                        MembershipFunctionType;
  typedef typename MembershipFunctionType::Pointer      MembershipFunctionPointer;

  /** Membership function container */
  typedef VectorContainer< unsigned int, 
       MembershipFunctionPointer >  MembershipFunctionContainerType;
  typedef typename MembershipFunctionContainerType::Pointer
                                    MembershipFunctionContainerPointer;
  
  /** Method to set/get the density functions. Here you can set a vector 
   * container of density functions. If no density functions are specified,
   * the filter will create ones for you. These default density functions
   * are gaussian density functions centered around the K-means of the 
   * input image.  */
  virtual void SetMembershipFunctions( MembershipFunctionContainerType 
                                                * densityFunctionContainer );
  itkGetObjectMacro(  MembershipFunctionContainer, MembershipFunctionContainerType );

  /** Set/Get methods for the number of classes. The user must supply this. */
  itkSetMacro( NumberOfClasses, unsigned int );
  itkGetMacro( NumberOfClasses, unsigned int );

  virtual void GenerateOutputInformation(); 

#ifdef ITK_USE_CONCEPT_CHECKING
  /** Begin concept checking */
  itkConceptMacro(InputMultiplyOperatorCheck,
    (Concept::MultiplyOperator<InputPixelType>));
  itkConceptMacro(DoubleConvertibleToProbabilityCheck,
    (Concept::Convertible<double, TProbabilityPrecisionType>));
  itkConceptMacro(InputHasNumericTraitsCheck,
    (Concept::HasNumericTraits<InputPixelType>));
  itkConceptMacro(ProbabilityHasNumericTraitsCheck,
    (Concept::HasNumericTraits<TProbabilityPrecisionType>));
  itkConceptMacro(DoublePlusInputCheck,
    (Concept::AdditiveOperators<double, InputPixelType>));
  /** End concept checking */
#endif

protected:
  BayesianClassifierInitializationImageFilter();
  virtual ~BayesianClassifierInitializationImageFilter() {}
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Initialize the membership functions. This will be called only if the membership 
   * function hasn't already been set. This method initializes membership functions
   * using gaussian density functions centered around the means computed using 
   * Kmeans.
   */
  virtual void InitializeMembershipFunctions();

  /** Here is where the prior and membership probability vector images are created.*/
  virtual void GenerateData();

private:
  BayesianClassifierInitializationImageFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  bool                      m_UserSuppliesMembershipFunctions;
  unsigned int              m_NumberOfClasses;

  typename MembershipFunctionContainerType::Pointer m_MembershipFunctionContainer;
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkBayesianClassifierInitializationImageFilter.txx"
#endif

#endif