File: itkBayesianClassifierInitializationImageFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (305 lines) | stat: -rw-r--r-- 11,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkBayesianClassifierInitializationImageFilter.txx,v $
  Language:  C++
  Date:      $Date: 2007-04-20 13:36:35 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

  Portions of this code are covered under the VTK copyright.
  See VTKCopyright.txt or http://www.kitware.com/VTKCopyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkBayesianClassifierInitializationImageFilter_txx
#define __itkBayesianClassifierInitializationImageFilter_txx

#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkGaussianDensityFunction.h"

namespace itk
{

/**
 *
 */
template <class TInputImage, class TProbabilityPrecisionType>
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::BayesianClassifierInitializationImageFilter()
  : m_UserSuppliesMembershipFunctions( false ),
    m_NumberOfClasses( 0 )
{
  m_MembershipFunctionContainer = NULL;
}


// GenerateOutputInformation method. Here we force update on the entire input
// image. It does not make sense having K-Means etc otherwise
template <class TInputImage, class TProbabilityPrecisionType>
void 
BayesianClassifierInitializationImageFilter<TInputImage, 
                                            TProbabilityPrecisionType>
::GenerateOutputInformation()
{
  // call the superclass' implementation of this method
  Superclass::GenerateOutputInformation();
  
  // get pointers to the input and output
  typename OutputImageType::Pointer outputPtr = this->GetOutput();
  if ( !outputPtr )
    {
    return;
    }

  // Set the size of the output region
  outputPtr->SetBufferedRegion( this->GetInput()->GetLargestPossibleRegion() );
  outputPtr->SetLargestPossibleRegion( this->GetInput()->GetLargestPossibleRegion() );

  if( m_NumberOfClasses == 0 )
    {
    itkExceptionMacro( 
       << "Number of classes unspecified");
    }
  outputPtr->SetVectorLength( m_NumberOfClasses );
}


template <class TInputImage, class TProbabilityPrecisionType>
void 
BayesianClassifierInitializationImageFilter<TInputImage, 
                                            TProbabilityPrecisionType>
::InitializeMembershipFunctions()
{
  // Typedefs for the KMeans filter, Covariance calculator...
  typedef ScalarImageKmeansImageFilter< InputImageType > KMeansFilterType;
  typedef typename KMeansFilterType::OutputImageType     KMeansOutputImageType;
  typedef ImageRegionConstIterator< 
                  KMeansOutputImageType >                ConstKMeansIteratorType;
  typedef Array< double >                                CovarianceArrayType;
  typedef Array< double >                                ClassCountArrayType;
  typedef Statistics::GaussianDensityFunction< 
          MeasurementVectorType >                        GaussianMembershipFunctionType;
  typedef VectorContainer< unsigned short, ITK_TYPENAME 
    GaussianMembershipFunctionType::MeanType* >          MeanEstimatorsContainerType;
  typedef VectorContainer< unsigned short, ITK_TYPENAME 
    GaussianMembershipFunctionType::CovarianceType* >    CovarianceEstimatorsContainerType;

  
  // Run k means to get the means from the input image
  typename KMeansFilterType::Pointer kmeansFilter = KMeansFilterType::New();
  kmeansFilter->SetInput( this->GetInput() );
  kmeansFilter->SetUseNonContiguousLabels( false );

  for( unsigned k=0; k < m_NumberOfClasses; k++ )
    {
    const double userProvidedInitialMean = k;  
    //TODO: Choose more reasonable defaults for specifying the initial means
    //to the KMeans filter. We could also add this as an option of the filter.
    kmeansFilter->AddClassWithInitialMean( userProvidedInitialMean );
    }

  try
    {
    kmeansFilter->Update();
    }
  catch( ExceptionObject& err )
    {
    // Pass exception to caller
    throw err;
    }

  typename KMeansFilterType::ParametersType 
          estimatedMeans = kmeansFilter->GetFinalMeans(); // mean of each class

  // find class covariances from the kmeans output to initialize the gaussian
  // density functions.
  ConstKMeansIteratorType itrKMeansImage( kmeansFilter->GetOutput(), 
                      kmeansFilter->GetOutput()->GetBufferedRegion() );
  CovarianceArrayType sumsOfSquares( m_NumberOfClasses );        // sum of the square intensities for each class
  CovarianceArrayType sums( m_NumberOfClasses );                 // sum of the intensities for each class
  ClassCountArrayType classCount( m_NumberOfClasses );           // m_Number of pixels belonging to each class
  CovarianceArrayType estimatedCovariances( m_NumberOfClasses ); // covariance of each class

  // initialize the arrays
  sumsOfSquares.Fill( 0.0 );
  sums.Fill( 0.0 );
  classCount.Fill( 0 );

  const InputImageType *                inputImage = this->GetInput();
  typename InputImageType::RegionType   imageRegion  = inputImage->GetLargestPossibleRegion();
  InputImageIteratorType                itrInputImage( inputImage, imageRegion );

  itrInputImage.GoToBegin();
  itrKMeansImage.GoToBegin();

  // find sumsOfSquares, sums, and classCount by indexing using the kmeans output labelmap
  while( !itrInputImage.IsAtEnd() )
    {
    sumsOfSquares[(unsigned int)itrKMeansImage.Get()] 
      = sumsOfSquares[(unsigned int)itrKMeansImage.Get()] +
        itrInputImage.Get() * itrInputImage.Get();
    sums[(unsigned int)itrKMeansImage.Get()] 
      = sums[(unsigned int)itrKMeansImage.Get()] + itrInputImage.Get();
    ++classCount[(unsigned int)itrKMeansImage.Get()];
    ++itrInputImage;
    ++itrKMeansImage;
    }

  // calculate the class covariances using the sumsOfSquares, sums, and classCount information
  itkDebugMacro( << "Estimated parameters after Kmeans filter" );
  for ( unsigned int i = 0; i < m_NumberOfClasses; ++i )
    {
    estimatedCovariances[i] =
      (sumsOfSquares[i] / classCount[i]) -
      ((sums[i] * sums[i]) / (classCount[i] * classCount[i]));
    if ( estimatedCovariances[i] < 0.0000001 )  // set lower limit for covariance
      {
      estimatedCovariances[i] = 0.0000001;
      };
    itkDebugMacro( << "cluster[" << i << "]-- " );
    itkDebugMacro( << " estimated mean : " << estimatedMeans[i] );
    itkDebugMacro( << " estimated covariance : " << estimatedCovariances[i] );
    }

  // Create gaussian membership functions.
  typename MeanEstimatorsContainerType::Pointer meanEstimatorsContainer =
                                       MeanEstimatorsContainerType::New();
  typename CovarianceEstimatorsContainerType::Pointer covarianceEstimatorsContainer =
                                       CovarianceEstimatorsContainerType::New();
  meanEstimatorsContainer->Reserve( m_NumberOfClasses );
  covarianceEstimatorsContainer->Reserve( m_NumberOfClasses );

  m_MembershipFunctionContainer = MembershipFunctionContainerType::New();
  m_MembershipFunctionContainer->Initialize(); // Clear elements
  for ( unsigned int i = 0; i < m_NumberOfClasses; ++i )
    {
    meanEstimatorsContainer->InsertElement( i, 
         new typename GaussianMembershipFunctionType::MeanType(1) );
    covarianceEstimatorsContainer->
      InsertElement( i, new typename GaussianMembershipFunctionType::CovarianceType() );
    typename GaussianMembershipFunctionType::MeanType*       meanEstimators = 
             const_cast< ITK_TYPENAME GaussianMembershipFunctionType::MeanType * >
                           (meanEstimatorsContainer->GetElement(i));
    typename GaussianMembershipFunctionType::CovarianceType* covarianceEstimators = 
              const_cast< ITK_TYPENAME GaussianMembershipFunctionType::CovarianceType * >
              (covarianceEstimatorsContainer->GetElement(i));
    meanEstimators->SetSize(1);
    covarianceEstimators->SetSize( 1, 1 );

    meanEstimators->Fill( estimatedMeans[i] );
    covarianceEstimators->Fill( estimatedCovariances[i] );
    typename GaussianMembershipFunctionType::Pointer gaussianDensityFunction
                                       = GaussianMembershipFunctionType::New();
    gaussianDensityFunction->SetMean( meanEstimatorsContainer->GetElement( i ) );
    gaussianDensityFunction->SetCovariance( covarianceEstimatorsContainer->GetElement( i ) );
 
    m_MembershipFunctionContainer->InsertElement(i, 
            dynamic_cast< MembershipFunctionType * >( gaussianDensityFunction.GetPointer() ) );
    }
}


template <class TInputImage, class TProbabilityPrecisionType>
void 
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::GenerateData()
{
  // TODO Check if we need a progress accumulator
  const InputImageType *                inputImage = this->GetInput();
  typename InputImageType::RegionType   imageRegion  = inputImage->GetLargestPossibleRegion();
  InputImageIteratorType                itrInputImage( inputImage, imageRegion );

  if ( !m_UserSuppliesMembershipFunctions )
    {
    // Perform Kmeans classification to initialize the gaussian density function
    // find class means via kmeans classification
    this->InitializeMembershipFunctions();
    }
  
  if( m_MembershipFunctionContainer->Size() != m_NumberOfClasses )
    {
    itkExceptionMacro( 
       << "Number of membership functions should be the same as the number of classes");
    }

  this->AllocateOutputs();

  // create vector image of membership probabilities
  OutputImageType *membershipImage = this->GetOutput();
  
  MembershipImageIteratorType itrMembershipImage( membershipImage, imageRegion );
  MembershipPixelType membershipPixel( m_NumberOfClasses );
  MeasurementVectorType mv;
  
  itrMembershipImage.GoToBegin();
  itrInputImage.GoToBegin();
  while ( !itrMembershipImage.IsAtEnd() )
    {
    mv[0] = itrInputImage.Get();
    for ( unsigned int i = 0; i < m_NumberOfClasses; i++ )
      {
      membershipPixel[i] = (m_MembershipFunctionContainer->GetElement(i))->Evaluate( mv );
      }
    itrMembershipImage.Set( membershipPixel );
    ++itrInputImage;
    ++itrMembershipImage;
    }

}

template <class TInputImage, class TProbabilityPrecisionType>
void 
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::SetMembershipFunctions( MembershipFunctionContainerType *membershipFunction )
{
  if( m_NumberOfClasses )
    {
    if( membershipFunction->Size() != m_NumberOfClasses )
      {
      itkExceptionMacro( 
          << "Number of membership functions should be the same as the number of classes");
      }
    }
  else
    {
    m_NumberOfClasses = membershipFunction->Size();
    }
      
  this->m_MembershipFunctionContainer = membershipFunction;
  m_UserSuppliesMembershipFunctions = true;
  this->Modified();
}


template <class TInputImage, class TProbabilityPrecisionType>
void 
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
  os << indent << "NumberOfClasses: " << m_NumberOfClasses << std::endl;
  if( m_MembershipFunctionContainer )
    {
    os << indent << "Membership function container:" 
       << m_MembershipFunctionContainer << std::endl; 
    }
  if( m_UserSuppliesMembershipFunctions )
    {
    os << indent << "Membership functions provided" << std::endl; 
    }
  else
    {
    os << indent << "Membership functions not provided" << std::endl; 
    }
}

} // end namespace itk

#endif