1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkBayesianClassifierInitializationImageFilter.txx,v $
Language: C++
Date: $Date: 2007-04-20 13:36:35 $
Version: $Revision: 1.6 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
Portions of this code are covered under the VTK copyright.
See VTKCopyright.txt or http://www.kitware.com/VTKCopyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkBayesianClassifierInitializationImageFilter_txx
#define __itkBayesianClassifierInitializationImageFilter_txx
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkGaussianDensityFunction.h"
namespace itk
{
/**
*
*/
template <class TInputImage, class TProbabilityPrecisionType>
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::BayesianClassifierInitializationImageFilter()
: m_UserSuppliesMembershipFunctions( false ),
m_NumberOfClasses( 0 )
{
m_MembershipFunctionContainer = NULL;
}
// GenerateOutputInformation method. Here we force update on the entire input
// image. It does not make sense having K-Means etc otherwise
template <class TInputImage, class TProbabilityPrecisionType>
void
BayesianClassifierInitializationImageFilter<TInputImage,
TProbabilityPrecisionType>
::GenerateOutputInformation()
{
// call the superclass' implementation of this method
Superclass::GenerateOutputInformation();
// get pointers to the input and output
typename OutputImageType::Pointer outputPtr = this->GetOutput();
if ( !outputPtr )
{
return;
}
// Set the size of the output region
outputPtr->SetBufferedRegion( this->GetInput()->GetLargestPossibleRegion() );
outputPtr->SetLargestPossibleRegion( this->GetInput()->GetLargestPossibleRegion() );
if( m_NumberOfClasses == 0 )
{
itkExceptionMacro(
<< "Number of classes unspecified");
}
outputPtr->SetVectorLength( m_NumberOfClasses );
}
template <class TInputImage, class TProbabilityPrecisionType>
void
BayesianClassifierInitializationImageFilter<TInputImage,
TProbabilityPrecisionType>
::InitializeMembershipFunctions()
{
// Typedefs for the KMeans filter, Covariance calculator...
typedef ScalarImageKmeansImageFilter< InputImageType > KMeansFilterType;
typedef typename KMeansFilterType::OutputImageType KMeansOutputImageType;
typedef ImageRegionConstIterator<
KMeansOutputImageType > ConstKMeansIteratorType;
typedef Array< double > CovarianceArrayType;
typedef Array< double > ClassCountArrayType;
typedef Statistics::GaussianDensityFunction<
MeasurementVectorType > GaussianMembershipFunctionType;
typedef VectorContainer< unsigned short, ITK_TYPENAME
GaussianMembershipFunctionType::MeanType* > MeanEstimatorsContainerType;
typedef VectorContainer< unsigned short, ITK_TYPENAME
GaussianMembershipFunctionType::CovarianceType* > CovarianceEstimatorsContainerType;
// Run k means to get the means from the input image
typename KMeansFilterType::Pointer kmeansFilter = KMeansFilterType::New();
kmeansFilter->SetInput( this->GetInput() );
kmeansFilter->SetUseNonContiguousLabels( false );
for( unsigned k=0; k < m_NumberOfClasses; k++ )
{
const double userProvidedInitialMean = k;
//TODO: Choose more reasonable defaults for specifying the initial means
//to the KMeans filter. We could also add this as an option of the filter.
kmeansFilter->AddClassWithInitialMean( userProvidedInitialMean );
}
try
{
kmeansFilter->Update();
}
catch( ExceptionObject& err )
{
// Pass exception to caller
throw err;
}
typename KMeansFilterType::ParametersType
estimatedMeans = kmeansFilter->GetFinalMeans(); // mean of each class
// find class covariances from the kmeans output to initialize the gaussian
// density functions.
ConstKMeansIteratorType itrKMeansImage( kmeansFilter->GetOutput(),
kmeansFilter->GetOutput()->GetBufferedRegion() );
CovarianceArrayType sumsOfSquares( m_NumberOfClasses ); // sum of the square intensities for each class
CovarianceArrayType sums( m_NumberOfClasses ); // sum of the intensities for each class
ClassCountArrayType classCount( m_NumberOfClasses ); // m_Number of pixels belonging to each class
CovarianceArrayType estimatedCovariances( m_NumberOfClasses ); // covariance of each class
// initialize the arrays
sumsOfSquares.Fill( 0.0 );
sums.Fill( 0.0 );
classCount.Fill( 0 );
const InputImageType * inputImage = this->GetInput();
typename InputImageType::RegionType imageRegion = inputImage->GetLargestPossibleRegion();
InputImageIteratorType itrInputImage( inputImage, imageRegion );
itrInputImage.GoToBegin();
itrKMeansImage.GoToBegin();
// find sumsOfSquares, sums, and classCount by indexing using the kmeans output labelmap
while( !itrInputImage.IsAtEnd() )
{
sumsOfSquares[(unsigned int)itrKMeansImage.Get()]
= sumsOfSquares[(unsigned int)itrKMeansImage.Get()] +
itrInputImage.Get() * itrInputImage.Get();
sums[(unsigned int)itrKMeansImage.Get()]
= sums[(unsigned int)itrKMeansImage.Get()] + itrInputImage.Get();
++classCount[(unsigned int)itrKMeansImage.Get()];
++itrInputImage;
++itrKMeansImage;
}
// calculate the class covariances using the sumsOfSquares, sums, and classCount information
itkDebugMacro( << "Estimated parameters after Kmeans filter" );
for ( unsigned int i = 0; i < m_NumberOfClasses; ++i )
{
estimatedCovariances[i] =
(sumsOfSquares[i] / classCount[i]) -
((sums[i] * sums[i]) / (classCount[i] * classCount[i]));
if ( estimatedCovariances[i] < 0.0000001 ) // set lower limit for covariance
{
estimatedCovariances[i] = 0.0000001;
};
itkDebugMacro( << "cluster[" << i << "]-- " );
itkDebugMacro( << " estimated mean : " << estimatedMeans[i] );
itkDebugMacro( << " estimated covariance : " << estimatedCovariances[i] );
}
// Create gaussian membership functions.
typename MeanEstimatorsContainerType::Pointer meanEstimatorsContainer =
MeanEstimatorsContainerType::New();
typename CovarianceEstimatorsContainerType::Pointer covarianceEstimatorsContainer =
CovarianceEstimatorsContainerType::New();
meanEstimatorsContainer->Reserve( m_NumberOfClasses );
covarianceEstimatorsContainer->Reserve( m_NumberOfClasses );
m_MembershipFunctionContainer = MembershipFunctionContainerType::New();
m_MembershipFunctionContainer->Initialize(); // Clear elements
for ( unsigned int i = 0; i < m_NumberOfClasses; ++i )
{
meanEstimatorsContainer->InsertElement( i,
new typename GaussianMembershipFunctionType::MeanType(1) );
covarianceEstimatorsContainer->
InsertElement( i, new typename GaussianMembershipFunctionType::CovarianceType() );
typename GaussianMembershipFunctionType::MeanType* meanEstimators =
const_cast< ITK_TYPENAME GaussianMembershipFunctionType::MeanType * >
(meanEstimatorsContainer->GetElement(i));
typename GaussianMembershipFunctionType::CovarianceType* covarianceEstimators =
const_cast< ITK_TYPENAME GaussianMembershipFunctionType::CovarianceType * >
(covarianceEstimatorsContainer->GetElement(i));
meanEstimators->SetSize(1);
covarianceEstimators->SetSize( 1, 1 );
meanEstimators->Fill( estimatedMeans[i] );
covarianceEstimators->Fill( estimatedCovariances[i] );
typename GaussianMembershipFunctionType::Pointer gaussianDensityFunction
= GaussianMembershipFunctionType::New();
gaussianDensityFunction->SetMean( meanEstimatorsContainer->GetElement( i ) );
gaussianDensityFunction->SetCovariance( covarianceEstimatorsContainer->GetElement( i ) );
m_MembershipFunctionContainer->InsertElement(i,
dynamic_cast< MembershipFunctionType * >( gaussianDensityFunction.GetPointer() ) );
}
}
template <class TInputImage, class TProbabilityPrecisionType>
void
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::GenerateData()
{
// TODO Check if we need a progress accumulator
const InputImageType * inputImage = this->GetInput();
typename InputImageType::RegionType imageRegion = inputImage->GetLargestPossibleRegion();
InputImageIteratorType itrInputImage( inputImage, imageRegion );
if ( !m_UserSuppliesMembershipFunctions )
{
// Perform Kmeans classification to initialize the gaussian density function
// find class means via kmeans classification
this->InitializeMembershipFunctions();
}
if( m_MembershipFunctionContainer->Size() != m_NumberOfClasses )
{
itkExceptionMacro(
<< "Number of membership functions should be the same as the number of classes");
}
this->AllocateOutputs();
// create vector image of membership probabilities
OutputImageType *membershipImage = this->GetOutput();
MembershipImageIteratorType itrMembershipImage( membershipImage, imageRegion );
MembershipPixelType membershipPixel( m_NumberOfClasses );
MeasurementVectorType mv;
itrMembershipImage.GoToBegin();
itrInputImage.GoToBegin();
while ( !itrMembershipImage.IsAtEnd() )
{
mv[0] = itrInputImage.Get();
for ( unsigned int i = 0; i < m_NumberOfClasses; i++ )
{
membershipPixel[i] = (m_MembershipFunctionContainer->GetElement(i))->Evaluate( mv );
}
itrMembershipImage.Set( membershipPixel );
++itrInputImage;
++itrMembershipImage;
}
}
template <class TInputImage, class TProbabilityPrecisionType>
void
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::SetMembershipFunctions( MembershipFunctionContainerType *membershipFunction )
{
if( m_NumberOfClasses )
{
if( membershipFunction->Size() != m_NumberOfClasses )
{
itkExceptionMacro(
<< "Number of membership functions should be the same as the number of classes");
}
}
else
{
m_NumberOfClasses = membershipFunction->Size();
}
this->m_MembershipFunctionContainer = membershipFunction;
m_UserSuppliesMembershipFunctions = true;
this->Modified();
}
template <class TInputImage, class TProbabilityPrecisionType>
void
BayesianClassifierInitializationImageFilter<TInputImage, TProbabilityPrecisionType>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "NumberOfClasses: " << m_NumberOfClasses << std::endl;
if( m_MembershipFunctionContainer )
{
os << indent << "Membership function container:"
<< m_MembershipFunctionContainer << std::endl;
}
if( m_UserSuppliesMembershipFunctions )
{
os << indent << "Membership functions provided" << std::endl;
}
else
{
os << indent << "Membership functions not provided" << std::endl;
}
}
} // end namespace itk
#endif
|