1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkBinaryMinMaxCurvatureFlowImageFilter.h,v $
Language: C++
Date: $Date: 2006-03-23 15:26:09 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkBinaryMinMaxCurvatureFlowImageFilter_h_
#define __itkBinaryMinMaxCurvatureFlowImageFilter_h_
#include "itkMinMaxCurvatureFlowImageFilter.h"
#include "itkBinaryMinMaxCurvatureFlowFunction.h"
namespace itk {
/** \class BinaryMinMaxCurvatureFlowImageFilter
* \brief Denoise a binary image using min/max curvature flow.
*
* BinaryMinMaxCurvatureFlowImageFilter implements a curvature driven image
* denosing algorithm. This filter assumes that the image is essentially
* binary: consisting of two classes. Iso-brightness contours in the input
* image are viewed as a level set. The level set is then evolved using
* a curvature-based speed function:
*
* \f[ I_t = F_{\mbox{minmax}} |\nabla I| \f]
*
* where \f$ F_{\mbox{minmax}} = \min(\kappa,0) \f$ if
* \f$ \mbox{Avg}_{\mbox{stencil}}(x) \f$
* is less than or equal to \f$ T_{thresold} \f$
* and \f$ \max(\kappa,0) \f$, otherwise.
* \f$ \kappa \f$ is the mean curvature of the iso-brightness contour
* at point \f$ x \f$.
*
* In min/max curvature flow, movement is turned on or off depending
* on the scale of the noise one wants to remove. Switching depends on
* the average image value of a region of radius \f$ R \f$ around each
* point. The choice of \f$ R \f$, the stencil radius, governs the scale of
* the noise to be removed.
*
* The threshold value \f$ T_{threshold} \f$ is a user specified value which
* discriminates between the two pixel classes.
*
* This filter make use of the multi-threaded finite difference solver
* hierarchy. Updates are computed using a BinaryMinMaxCurvatureFlowFunction
* object. A zero flux Neumann boundary condition is used when computing
* derivatives near the data boundary.
*
* \warning This filter assumes that the input and output types have the
* same dimensions. This filter also requires that the output image pixels
* are of a real type. This filter works for any dimensional images.
*
* Reference:
* "Level Set Methods and Fast Marching Methods", J.A. Sethian,
* Cambridge Press, Chapter 16, Second edition, 1999.
*
* \sa BinaryMinMaxCurvatureFlowFunction
* \sa CurvatureFlowImageFilter
* \sa MinMaxCurvatureFlowImageFilter
*
* \ingroup ImageEnhancement
* \ingroup Multithreaded
*
*/
template <class TInputImage, class TOutputImage>
class ITK_EXPORT BinaryMinMaxCurvatureFlowImageFilter
: public MinMaxCurvatureFlowImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard class typedefs. */
typedef BinaryMinMaxCurvatureFlowImageFilter Self;
typedef MinMaxCurvatureFlowImageFilter<TInputImage, TOutputImage>
Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(BinaryMinMaxCurvatureFlowImageFilter,
MinMaxCurvatureFlowImageFilter);
/** Inherit typedefs from Superclass. */
typedef typename Superclass::FiniteDifferenceFunctionType
FiniteDifferenceFunctionType;
typedef typename Superclass::OutputImageType OutputImageType;
/** BinaryMinMaxCurvatureFlowFunction type. */
typedef BinaryMinMaxCurvatureFlowFunction<OutputImageType>
BinaryMinMaxCurvatureFlowFunctionType;
/** Dimensionality of input and output data is assumed to be the same.
* It is inherited from the superclass. */
itkStaticConstMacro(ImageDimension, unsigned int,Superclass::ImageDimension);
/** Set/Get the threshold value. */
itkSetMacro( Threshold, double );
itkGetMacro( Threshold, double );
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(InputConvertibleToOutputCheck,
(Concept::Convertible<typename TInputImage::PixelType,
typename TOutputImage::PixelType>));
/** End concept checking */
#endif
protected:protected:
BinaryMinMaxCurvatureFlowImageFilter();
~BinaryMinMaxCurvatureFlowImageFilter() {}
void PrintSelf(std::ostream& os, Indent indent) const;
/** Initialize the state of filter and equation before each iteration.
* Progress feeback is implemented as part of this method. */
virtual void InitializeIteration();
private:
BinaryMinMaxCurvatureFlowImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
double m_Threshold;
};
} // end namspace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkBinaryMinMaxCurvatureFlowImageFilter.txx"
#endif
#endif
|