File: itkCannySegmentationLevelSetFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (116 lines) | stat: -rw-r--r-- 4,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkCannySegmentationLevelSetFunction.txx,v $
  Language:  C++
  Date:      $Date: 2006-04-12 07:31:14 $
  Version:   $Revision: 1.10 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkCannySegmentationLevelSetFunction_txx_
#define __itkCannySegmentationLevelSetFunction_txx_

#include "itkCannySegmentationLevelSetFunction.h"
#include "itkGradientImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"

namespace itk {

template <class TImageType, class TFeatureImageType>
void CannySegmentationLevelSetFunction<TImageType, TFeatureImageType>
::CalculateSpeedImage()
{
  // Create a distance transform to the canny edges
  this->CalculateDistanceImage();

  // Graft the distance transform into the Speed Image
  this->GetSpeedImage()->Graft( m_Distance->GetOutput() );

}

template <class TImageType, class TFeatureImageType>
void CannySegmentationLevelSetFunction<TImageType, TFeatureImageType>
::CalculateAdvectionImage()
{
  typename GradientImageFilter<ImageType, ScalarValueType, ScalarValueType>::Pointer
    gradient = GradientImageFilter<ImageType, ScalarValueType, ScalarValueType>::New();

  typedef typename GradientImageFilter<ImageType, ScalarValueType,
    ScalarValueType>::OutputImageType CovariantVectorImageType;

  typename MultiplyImageFilter<CovariantVectorImageType, ImageType,
    CovariantVectorImageType>::Pointer multiply =
    MultiplyImageFilter<CovariantVectorImageType, ImageType, CovariantVectorImageType>::New();
  
  // Create a distance transform to the canny edges
  this->CalculateDistanceImage();

  gradient->SetInput(m_Distance->GetOutput());
  gradient->Update();

  multiply->SetInput1(gradient->GetOutput());
  multiply->SetInput2(m_Distance->GetOutput());
  
  //  multiply->GraftOutput(dynamic_cast<CovariantVectorImageType *>(this->GetAdvectionImage()));
  multiply->Update();  

// Copy output to Advection Image
  ImageRegionIterator<VectorImageType> it(this->GetAdvectionImage(),
                                          this->GetAdvectionImage()->GetRequestedRegion());
  ImageRegionConstIterator<CovariantVectorImageType> it_a(multiply->GetOutput(),
                                                          this->GetAdvectionImage()->GetRequestedRegion());
  
  for (; ! it.IsAtEnd(); ++it, ++it_a)
    {
    it.Set(it_a.Get());
    }
}

template <class TImageType, class TFeatureImageType>
void CannySegmentationLevelSetFunction<TImageType, TFeatureImageType>
::CalculateDistanceImage()
{

  typename TFeatureImageType::Pointer tempFeature = TFeatureImageType::New();

  // The minipipeline might muck with its feature image requested
  // region. The rest of the class relies on the feature image requested
  // region as specified by the original level set
  // filter. We make a temporary shallow copy of feature image to
  // build the distance image.
  tempFeature->Graft(this->GetFeatureImage());

  // Only cast if we need to
  if ( typeid(TImageType) == typeid(TFeatureImageType))
    {
    m_Canny->SetInput(tempFeature);
    }
  else
    {
    m_Caster->SetInput(tempFeature);
    m_Canny->SetInput(m_Caster->GetOutput());
    }

  m_Canny->SetUpperThreshold(m_Threshold);
  m_Canny->SetVariance(m_Variance);
  m_Canny->SetMaximumError(0.01);
  m_Canny->SetOutsideValue(NumericTraits<ScalarValueType>::Zero);

  m_Distance->SetInput(m_Canny->GetOutput());
  m_Distance->GetOutput()->SetRequestedRegion(this->GetSpeedImage()->GetRequestedRegion());
  m_Distance->Update();
}

} // end namespace itk


#endif