1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkFEMRegistrationFilter.h,v $
Language: C++
Date: $Date: 2006-11-07 23:23:15 $
Version: $Revision: 1.24 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkFEMRegistrationFilter_h_
#define _itkFEMRegistrationFilter_h_
#include "itkFEMLinearSystemWrapperItpack.h"
#include "itkFEMLinearSystemWrapperDenseVNL.h"
#include "itkFEMGenerateMesh.h"
#include "itkFEMSolverCrankNicolson.h"
#include "itkFEMMaterialLinearElasticity.h"
#include "itkFEMImageMetricLoad.h"
#include "itkFEMFiniteDifferenceFunctionLoad.h"
#include "itkImage.h"
#include "itkVector.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkVectorCastImageFilter.h"
#include "itkVectorIndexSelectionCastImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkImageToImageMetric.h"
#include "itkTranslationTransform.h"
#include "itkVectorExpandImageFilter.h"
#include "itkRecursiveMultiResolutionPyramidImageFilter.h"
#include "itkFEMLoadLandmark.h"
#include "vnl/vnl_vector.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_vector_fixed.h"
#include <iostream>
#include <string>
namespace itk {
namespace fem {
/** \class FEMRegistrationFilter
\brief FEM Image registration filter.
The image registration problem is modeled here with the finite element method.
Image registration is, in general, an ill-posed problem. Thus, we use an optimization
scheme where the optimization criterion is given by a regularized variational energy.
The variational energy arises from modeling the image as a physical body on which
external forces act. The body is allowed to deform so as to minimize the
applied force. The resistance of the physical body to deformation, determined by
the physics associated with the body, serves to regularize the solution.
The forces applied to the body are, generally, highly non-linear and so the
body is allowed to deform slowly and incrementally. The direction it deforms
follows the gradient of the potential energy (the force) we define. The potential
energies we may choose from are given by the itk image-to-image metrics.
The choices and the associated direction of descent are :
Mean Squares (minimize),
Normalized Cross-Correlation (maximize)
Mutual Information (maximize).
Note that we have to set the direction (SetDescentDirection) when we choose a metric.
The forces driving the problem may also be given by user-supplied landmarks.
The corners of the image, in this example, are always pinned. This example is
designed for 2D or 3D images. A rectilinear mesh is generated automatically
given the correct element type (Quadrilateral or Hexahedral).
Our specific Solver for this example uses trapezoidal time stepping. This is
a method for solving a second-order PDE in time. The solution is penalized
by the zeroth (mass matrix) and first derivatives (stiffness matrix) of the
shape functions. There is an option to perform a line search on the energy
after each iteration. Optimal parameter settings require experimentation.
The following approach tends to work well :
Choose the relative size of density to elasticity (e.g. Rho / E ~= 1.)
such that the image deforms locally and slowly.
This also affects the stability of the solution.
Choose the time step to control the size of the deformation at each step.
Choose enough iterations to allow the solution to converge (this may be automated).
Reading images is up to the user. Either set the images using
SetMoving/FixedImage or see the ReadImages function.
\note This code works for only 2 or 3 dimensions b/c we do not have > 3D elements.
\note TODO : Keep the full field around (if using re-gridding).
Introduce compensation for kinematic non-linearity in time (if using Eulerian frame).
*/
template<class TMovingImage,class TFixedImage>
class ITK_EXPORT FEMRegistrationFilter : public ImageToImageFilter<TMovingImage, TFixedImage>
{
public:
typedef FEMRegistrationFilter Self;
typedef ImageToImageFilter<TMovingImage, TFixedImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods) */
itkTypeMacro(FEMRegistrationFilter, ImageToImageFilter );
typedef TMovingImage MovingImageType;
typedef TFixedImage FixedImageType;
typedef typename FixedImageType::PixelType PixelType;
typedef typename FixedImageType::SizeType ImageSizeType;
/** Dimensionality of input and output data is assumed to be the same. */
itkStaticConstMacro(ImageDimension, unsigned int,
FixedImageType::ImageDimension);
typedef Image< float, itkGetStaticConstMacro(ImageDimension) > FloatImageType;
typedef LinearSystemWrapperItpack LinearSystemSolverType;
typedef SolverCrankNicolson SolverType;
enum Sign { positive = 1, negative = -1 };
typedef double Float;
typedef Load::ArrayType LoadArray;
typedef std::vector<typename LoadLandmark::Pointer> LandmarkArrayType;
typedef itk::Vector<float,itkGetStaticConstMacro(ImageDimension)> VectorType;
typedef itk::Image<VectorType,itkGetStaticConstMacro(ImageDimension)> FieldType;
typedef itk::WarpImageFilter<MovingImageType,FixedImageType, FieldType> WarperType;
typedef MaterialLinearElasticity MaterialType;
typedef itk::ImageRegionIteratorWithIndex<FixedImageType> ImageIterator;
typedef itk::ImageRegionIteratorWithIndex<FloatImageType> FloatImageIterator;
typedef itk::ImageRegionIteratorWithIndex<FieldType> FieldIterator;
typedef itk::VectorIndexSelectionCastImageFilter<FieldType,FloatImageType> IndexSelectCasterType;
/** Typedef support for the interpolation function */
typedef double CoordRepType;
typedef VectorInterpolateImageFunction<FieldType,CoordRepType>
InterpolatorType;
typedef typename InterpolatorType::Pointer InterpolatorPointer;
typedef VectorLinearInterpolateImageFunction<FieldType,CoordRepType>
DefaultInterpolatorType;
/** Set the interpolator function. */
itkSetObjectMacro( Interpolator, InterpolatorType );
/** Get a pointer to the interpolator function. */
itkGetObjectMacro( Interpolator, InterpolatorType );
typedef itk::VectorExpandImageFilter<FieldType,FieldType> ExpanderType;
typedef typename ExpanderType::ExpandFactorsType ExpandFactorsType;
typedef itk::RecursiveMultiResolutionPyramidImageFilter<FixedImageType,FixedImageType>
FixedPyramidType;
/** Instantiate the load class with the correct image type. */
//#define USEIMAGEMETRIC
#ifdef USEIMAGEMETRIC
typedef ImageToImageMetric<ImageType,FixedImageType> MetricBaseType;
typedef ImageMetricLoad<ImageType,ImageType> ImageMetricLoadType;
#else
typedef FiniteDifferenceFunctionLoad<MovingImageType,FixedImageType> ImageMetricLoadType;
typedef PDEDeformableRegistrationFunction<FixedImageType,MovingImageType,FieldType> MetricBaseType;
#endif
typedef typename MetricBaseType::Pointer MetricBaseTypePointer;
/* Main functions */
/** Read the configuration file to set up the example parameters */
bool ReadConfigFile(const char*);
/** Call this to register two images. */
void RunRegistration(void);
/** Call this to write out images - a counter is attached to the
* file name so we can output a numbered sequence tracking the deformation.
*/
void WriteWarpedImage(const char* fn);
/** The solution loop */
void IterativeSolve(SolverType& S);
/** The solution loop for a simple multi-resolution strategy. */
void MultiResSolve();
/** Applies the warp to the input image. */
void WarpImage(const MovingImageType * R);
/** Writes the displacement field to a file. */
int WriteDisplacementField(unsigned int index);
/** Writes the displacement field to a file as a single volume with multiple components. */
int WriteDisplacementFieldMultiComponent();
/** One can set the reference file names to read images from files */
void SetMovingFile(const char* r) {m_MovingFileName=r;}
std::string GetMovingFile() {return m_MovingFileName;}
void SetFixedFile(const char* t) {m_FixedFileName=t;}
std::string GetFixedFile() {return m_FixedFileName;}
/** One can set the images directly to input images in an application */
/** Define the reference (moving) image. */
void SetMovingImage(MovingImageType* R);
/** Define the target (fixed) image. */
void SetFixedImage(FixedImageType* T);
MovingImageType* GetMovingImage(){return m_MovingImage;}
MovingImageType* GetOriginalMovingImage(){return m_OriginalMovingImage;}
FixedImageType* GetFixedImage(){return m_FixedImage;}
/** Get the reference image warped to the target image.
Must first apply the warp using WarpImage() */
FixedImageType* GetWarpedImage(){return m_WarpedImage;}
/** Compute the jacobian of the current deformation field.*/
void ComputeJacobian(float sign=1.0, FieldType* field=NULL , float smooth=0.0);
/** Get the image that gives the jacobian of the deformation field. */
FloatImageType* GetJacobianImage(){return m_FloatImage;}
/** Outputs the FE deformation field interpolated over the entire image domain.*/
FieldType* GetDeformationField(){return m_Field;}
/** Sets the FE deformation field.*/
void SetDeformationField(FieldType* F)
{
m_FieldSize=F->GetLargestPossibleRegion().GetSize();
m_Field=F;
}
/** These functions control the use of landmark constraints. Currently,
landmarks must be read in from a file. */
void SetLandmarkFile(const char* l) {m_LandmarkFileName=l; }
/** This determines if the landmark file will be read */
void UseLandmarks(bool b) {m_UseLandmarks=b;}
/** We check the jacobian of the current deformation field.
If it is < threshold, we begin diffeomorphism enforcement:
1) Warp the moving image.
2) Set the vector field to zero.
3) Set the warped moving image as the new moving image,
resizing if necessary.
*/
void EnforceDiffeomorphism(float thresh , SolverType& S , bool onlywriteimages);
/** The warped reference image will be written to this file name with
the extension "11.img" appended to it. One can also output the
image after every iteration, yielding result11.img, result12.img, etc.
by uncommenting the code at the end of IterativeSolve. */
void SetResultsFile(const char* r) {m_ResultsFileName=r;}
void SetResultsFileName (const char* f){m_ResultsFileName=f;}
std::string GetResultsFileName () {return m_ResultsFileName;}
/** Sets the filename for the vector field component images. */
void SetDisplacementsFile(const char* r) {m_DisplacementsFileName=r;}
/** The FEM filter can generate its own mesh for 2 or 3 dimensions, if none is provided.
The mesh is generated for quadrilaterals in 2D and hexahedra in 3D. This function
sets the number of elements generated along each dimension at the resolution
designated by "which".
E.g. to generate 10 pixels per element in each dimension in the 1st resolution, use SetMeshResolution(10,0);.
*/
void SetMeshPixelsPerElementAtEachResolution(unsigned int i,unsigned int which=0){ m_MeshPixelsPerElementAtEachResolution[which]=i;}
/** This determines the number of integration points to use at each resolution.
These integration points are used to generate the force. The actual number
used will be i^d, where d is the number of parameters in the elements local domain. */
void SetNumberOfIntegrationPoints(unsigned int i,unsigned int which=0){ m_NumberOfIntegrationPoints[which]=i;}
/** The metric region allows one to compute the derivative (force) of the similarity metric
* using a region of size [i,i] in 2D [i,i,i] in 3D.
* \param i number of elements
* \param which determines the region at a given resolution of the solution process.
*/
void SetWidthOfMetricRegion(unsigned int i,unsigned int which=0) { m_MetricWidth[which]=i;}
unsigned int GetWidthOfMetricRegion(unsigned int which=0) { return m_MetricWidth[which];}
/** Setting the maximum iterations stops the solution after i iterations regardless of energy.
* \param i number of elements
* \param which determines the resolution of the solution process the call is applied to.
*/
void SetMaximumIterations(unsigned int i,unsigned int which) { m_Maxiters[which]=i;}
/** Setting the time step - usually 1.0. We prefer to use rho to control step sizes.
*/
void SetTimeStep(Float i) { m_dT=i;}
/** Set alpha for the trapezoidal rule (usually 1.0 in our experiments). */
void SetAlpha(Float a) { m_Alpha=a;}
/** Sets the energy below which we decide the solution has converged.
*/
void SetEnergyReductionFactor(Float i) { m_EnergyReductionFactor=i;}
/** Sets the stiffness Matrix weight. */
void SetElasticity(Float i,unsigned int which=0) { m_E[which]=i;}
/** Gets the stiffness Matrix weight. */
Float GetElasticity(unsigned int which=0) { return m_E[which];}
/** Mass matrix weight */
void SetRho(Float r,unsigned int which=0) { m_Rho[which]=r;}
/** Image similarity energy weight */
void SetGamma(Float r,unsigned int which=0) { m_Gamma[which]=r;}
/** Tries to minimize energy */
void SetDescentDirectionMinimize() { m_DescentDirection=positive;}
/** Tries to maximize energy */
void SetDescentDirectionMaximize() { m_DescentDirection=negative;}
/** Finds the minimum energy between the current and next solution by linear search.*/
void DoLineSearch(unsigned int b) { m_DoLineSearchOnImageEnergy=b; }
/** Sets the use of multi-resolution strategy. The control file always uses multi-res. */
void DoMultiRes(bool b) { m_DoMultiRes=b; }
/** Sets the use of multi-resolution strategy. The control file always uses multi-res. */
void EmployRegridding(unsigned int b) { m_EmployRegridding=b; }
/** This sets the line search's max iterations. */
void SetLineSearchMaximumIterations(unsigned int f) { m_LineSearchMaximumIterations=f; }
/** Sets the boolean for writing the displacement field to a file. */
void SetWriteDisplacements(bool b) {m_WriteDisplacementField=b;}
/** Sets the boolean for writing the displacement field to a file.*/
bool GetWriteDisplacements() {return m_WriteDisplacementField;}
/** Sets the file name for the FEM multi-resolution registration.
One can also set the parameters in code. */
void SetConfigFileName (const char* f){m_ConfigFileName=f;}
std::string GetConfigFileName () {return m_ConfigFileName; }
ImageSizeType GetImageSize(){ return m_FullImageSize; }
/** Set/Get the Metric. */
MetricBaseTypePointer GetMetric() { return m_Metric; }
void SetMetric(MetricBaseTypePointer MP) { m_Metric=MP; }
/** Choose the metric by parameter : 0= mean squares, 1=cross correlation,
2=pattern intensity, 3 = mutual information. */
void ChooseMetric( float whichmetric);
/** This function allows one to set the element and its material externally. */
void SetElement(Element::Pointer e) {m_Element=e;}
/** This sets the pointer to the material. */
void SetMaterial(MaterialType::Pointer m) {m_Material=m;}
void PrintVectorField(unsigned int modnum=1000);
void SetNumLevels(unsigned int i) { m_NumLevels=i; }
void SetMaxLevel(unsigned int i) { m_MaxLevel=i; }
void SetTemp(Float i) { m_Temp=i; }
/** de/constructor */
FEMRegistrationFilter( );
~FEMRegistrationFilter();
// HELPER FUNCTIONS
protected :
/**
* Easy access to the FEMObjectFactory. We create a new class
* whose name is shorter and it's not templated...
*/
class FEMOF : public FEMObjectFactory<FEMLightObject>{
protected:
FEMOF();
~FEMOF();
};
/** This function generates a regular mesh of ElementsPerSide^D size */
void CreateMesh(double ElementsPerSide, Solver& S, ImageSizeType sz);
/** The non-image loads are entered into the solver. */
void ApplyLoads(SolverType& S,ImageSizeType Isz,double* spacing=NULL);
/** The image loads are entered into the solver. */
void ApplyImageLoads(SolverType& S, MovingImageType* i1, FixedImageType* i2);
/** Builds the itpack linear system wrapper with appropriate parameters.
Currently undefined */
void CreateLinearSystemSolver();
/** Evaluates the image similarity energy by calling the image metric */
Float EvaluateEnergy();
/** Interpolates the vector field over the domain.
* Our convention is to always keep the vector field
* at the scale of the original images.
*/
void InterpolateVectorField(SolverType& S);
/** Calculates the metric over the domain given the vector field.
*/
FloatImageType* GetMetricImage(FieldType* F);
/** Re-size the vector field (smaller to larger). */
typedef typename FieldType::Pointer FieldPointer;
FieldPointer ExpandVectorField(ExpandFactorsType* expandFactors, FieldType* f);
/** This is used for changing between mesh resolutions. */
void SampleVectorFieldAtNodes(SolverType& S);
Float EvaluateResidual(SolverType& mySolver,Float t);
/* Finds a triplet that brackets the energy minimum. From Numerical Recipes.*/
void FindBracketingTriplet(SolverType& mySolver,Float* a, Float* b, Float* c);
/** Finds the optimum value between the last two solutions
* and sets the current solution to that value. Uses Evaluate Residual;
*/
Float GoldenSection(SolverType& mySolver,Float tol=0.01,unsigned int MaxIters=25);
/** Set the solver's current load. */
// itkSetMacro( Load, ImageMetricLoadType* );
itkGetMacro( Load, ImageMetricLoadType* );
void PrintSelf(std::ostream& os, Indent indent) const;
private :
void InitializeField();
FEMRegistrationFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
std::string m_ConfigFileName;
std::string m_ResultsFileName;
std::string m_MovingFileName;
std::string m_FixedFileName;
std::string m_LandmarkFileName;
std::string m_DisplacementsFileName;
std::string m_MeshFileName;
unsigned int m_DoLineSearchOnImageEnergy;
unsigned int m_LineSearchMaximumIterations;
vnl_vector<unsigned int> m_NumberOfIntegrationPoints;// resolution of integration
vnl_vector<unsigned int> m_MetricWidth;
vnl_vector<unsigned int> m_Maxiters; // max iterations
unsigned int m_TotalIterations;
unsigned int m_NumLevels; // Number of Resolution Levels
unsigned int m_MaxLevel; // Maximum Level (NumLevels is original resolution).
unsigned int m_MeshLevels;// Number of Mesh Resolutions ( should be >= 1)
unsigned int m_MeshStep; // Ratio Between Mesh Resolutions ( currently set to 2, should be >= 1)
unsigned int m_FileCount; // keeps track of number of files written
unsigned int m_CurrentLevel;
typename FixedImageType::SizeType m_CurrentLevelImageSize;
unsigned int m_WhichMetric;
/** Stores the number of pixels per element of the mesh for each
resolution of the multi-resolution pyramid */
vnl_vector<unsigned int> m_MeshPixelsPerElementAtEachResolution;
Float m_dT; // time step
vnl_vector<Float> m_E; // elasticity
vnl_vector<Float> m_Rho; // mass matrix weight
vnl_vector<Float> m_Gamma; // image similarity weight
Float m_Energy; // current value of energy
Float m_MinE; // minimum recorded energy
Float m_MinJacobian; // minimum recorded energy
Float m_Alpha; // difference parameter
/** Factor we want to reduce the energy by - determines convergence. */
Float m_EnergyReductionFactor;
Float m_Temp;
bool m_WriteDisplacementField;
bool m_DoMultiRes;
bool m_UseLandmarks;
bool m_ReadMeshFile;
bool m_UseMassMatrix;
unsigned int m_EmployRegridding;
Sign m_DescentDirection;
ImageSizeType m_FullImageSize; // image size
ImageSizeType m_ImageOrigin; // image size
/** Gives the ratio of original image size to current image size - for dealing with multi-res.*/
ImageSizeType m_ImageScaling;
ImageSizeType m_CurrentImageScaling;
typename FieldType::RegionType m_FieldRegion;
typename FieldType::SizeType m_FieldSize;
typename FieldType::Pointer m_Field;
// only use TotalField if re-gridding is employed.
typename FieldType::Pointer m_TotalField;
ImageMetricLoadType* m_Load; // Defines the load to use
// define the warper
typename WarperType::Pointer m_Warper;
// declare a new image to hold the warped reference
typename FixedImageType::Pointer m_WarpedImage;
typename FloatImageType::Pointer m_FloatImage;
typename FixedImageType::RegionType m_Wregion;
typename FixedImageType::IndexType m_Windex;
// declare images for target and reference
typename MovingImageType::Pointer m_MovingImage;
typename MovingImageType::Pointer m_OriginalMovingImage;
typename FixedImageType::Pointer m_FixedImage;
// element and metric pointers
typename Element::Pointer m_Element;
typename MaterialType::Pointer m_Material;
MetricBaseTypePointer m_Metric;
// multi-resolution stuff
// typename FixedPyramidType::Pointer m_FixedPyramid;
// typename FixedPyramidType::Pointer m_MovingPyramid;
LandmarkArrayType m_LandmarkArray;
InterpolatorPointer m_Interpolator;
};
}} // end namespace itk::fem
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFEMRegistrationFilter.txx"
#endif
#endif
|