1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGeodesicActiveContourShapePriorLevelSetImageFilter.h,v $
Language: C++
Date: $Date: 2003-09-10 14:28:31 $
Version: $Revision: 1.2 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGeodesicActiveContourShapePriorLevelSetImageFilter_h_
#define __itkGeodesicActiveContourShapePriorLevelSetImageFilter_h_
#include "itkShapePriorSegmentationLevelSetImageFilter.h"
#include "itkGeodesicActiveContourShapePriorLevelSetFunction.h"
#include "itkShapePriorMAPCostFunction.h"
namespace itk {
/** \class GeodesicActiveContourShapePriorLevelSetImageFilter
* \brief Segments structures in an image based on a user supplied edge potential map
* and user supplied shape model.
*
* \par IMPORTANT
* The SegmentationLevelSetImageFilter class, ShapePriorSegmentationLevelSetImageFilter
* class and the
* GeodesicActiveContourShapePrior0LevelSetFunction class contain additional
* information necessary to gain full understanding of how to use this filter.
*
* \par OVERVIEW
* This class is a level set method segmentation filter. An initial contour
* is propagated outwards (or inwards) until it ''sticks'' to the shape boundaries.
* This is done by using a level set speed function based on a user supplied
* edge potential map and a user supplied shape model.
*
* \par INPUTS
* This filter requires two inputs. The first input is a initial level set.
* The initial level set is a real image which contains the initial contour/surface
* as the zero level set. For example, a signed distance function from the initial
* contour/surface is typically used. Unlike the simpler ShapeDetectionLevelSetImageFilter
* the initial contour does not have to lie wholly within the shape to be segmented.
* The intiial contour is allow to overlap the shape boundary. The advection term
* in the update equation behaves like a doublet and attracts the contour to the boundary.
* The shape prior term adds robustness by incorporating aprior information about
* the shape to be segmented.
* This approach for segmentation follows that of Leventon et al (2000).
*
* \par
* The second input is the feature image. For this filter, this is the edge
* potential map. General characteristics of an edge potential map is that
* it has values close to zero in regions near the edges and values close
* to one inside the shape itself. Typically, the edge potential map is compute
* from the image gradient, for example:
*
* \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f]
* \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f]
*
* where \f$ I \f$ is image intensity and
* \f$ (\nabla * G) \f$ is the derivative of Gaussian operator.
*
* \par
* See SegmentationLevelSetImageFilter and SparseFieldLevelSetImageFilter
* for more information on Inputs.
*
* \par PARAMETERS
* The PropagationScaling parameter can be used to switch from propagation outwards
* (POSITIVE scaling parameter) versus propagating inwards (NEGATIVE scaling
* parameter).
*
* This implementation allows the user to set the weights between the propagation, advection
* curvature and shape prior term using methods SetPropagationScaling(), SetAdvectionScaling(),
* SetCurvatureScaling() and SetShapePriorScaling. In general, the larger the CurvatureScaling,
* the smoother the
* resulting contour. To follow the implementation in Leventon et al paper,
* set the PropagationScaling to \f$ \lambda_1 \times c \f$,
* the AdvectionScaling and CurvatureScaling both to \f$ \lambda_1 \f$ and
* the ShapePriorScaling to \f$ \lambda_2 \f$.
*
* \par OUTPUTS
* The filter outputs a single, scalar, real-valued image.
* Negative values in the output image represent the inside of the segmented region
* and positive values in the image represent the outside of the segmented region. The
* zero crossings of the image correspond to the position of the propagating
* front.
*
* \par
* See SparseFieldLevelSetImageFilter and
* SegmentationLevelSetImageFilter for more information.
*
* \par REFERENCES
* \par
* Leventon, M.E. et al. "Statistical Shape Influence in Geodesic Active Contours", CVPR 2000.
*
* \sa SegmentationLevelSetImageFilter
* \sa ShapePriorSegmentationLevelSetImageFilter
* \sa GeodesicActiveContourShapePriorLevelSetFunction
* \sa SparseFieldLevelSetImageFilter
* \sa ShapeSignedDistanceFunction
*
* \ingroup LevelSetSegmentation
*/
template <class TInputImage,
class TFeatureImage,
class TOutputPixelType = float >
class ITK_EXPORT GeodesicActiveContourShapePriorLevelSetImageFilter
: public ShapePriorSegmentationLevelSetImageFilter< TInputImage, TFeatureImage,
TOutputPixelType >
{
public:
/** Standard class typedefs */
typedef GeodesicActiveContourShapePriorLevelSetImageFilter Self;
typedef ShapePriorSegmentationLevelSetImageFilter< TInputImage, TFeatureImage,
TOutputPixelType > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Inherited typedef from the superclass. */
typedef typename Superclass::ValueType ValueType;
typedef typename Superclass::OutputImageType OutputImageType;
typedef typename Superclass::FeatureImageType FeatureImageType;
typedef typename Superclass::OutputPixelType OutputPixelType;
/** Type of the segmentation function */
typedef GeodesicActiveContourShapePriorLevelSetFunction< OutputImageType,
FeatureImageType >
GeodesicActiveContourFunctionType;
typedef typename GeodesicActiveContourFunctionType::Pointer
GeodesicActiveContourFunctionPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(GeodesicActiveContourShapePriorLevelSetImageFilter,
ShapePriorSegmentationLevelSetImageFilter);
/** Method for creation through the object factory */
itkNewMacro(Self);
/** Set the value of sigma used to compute the edge potential map derivatives */
void SetDerivativeSigma( float value )
{
if ( value != m_GeodesicActiveContourFunction->GetDerivativeSigma() )
{
m_GeodesicActiveContourFunction->SetDerivativeSigma( value );
this->Modified();
}
}
/** Get the value of sigma used to compute the edge potential map derivatives. */
float GetDerivativeSigma() const
{ return m_GeodesicActiveContourFunction->GetDerivativeSigma(); }
protected:
~GeodesicActiveContourShapePriorLevelSetImageFilter() {}
GeodesicActiveContourShapePriorLevelSetImageFilter();
virtual void PrintSelf(std::ostream &os, Indent indent) const;
GeodesicActiveContourShapePriorLevelSetImageFilter(const Self &); // purposely not implemented
void operator=(const Self&); //purposely not implemented
/** Overridden from Superclass to handle the case when PropagationScaling is zero
* and CurvatureScaling is non-zero.*/
void GenerateData();
private:
GeodesicActiveContourFunctionPointer m_GeodesicActiveContourFunction;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGeodesicActiveContourShapePriorLevelSetImageFilter.txx"
#endif
#endif
|