1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkImageGaussianModelEstimator.txx,v $
Language: C++
Date: $Date: 2006-01-11 19:43:30 $
Version: $Revision: 1.16 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkImageGaussianModelEstimator_txx
#define _itkImageGaussianModelEstimator_txx
#include "itkImageGaussianModelEstimator.h"
namespace itk
{
template<class TInputImage,
class TMembershipFunction,
class TTrainingImage>
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>
::ImageGaussianModelEstimator(void):
m_Covariance( NULL )
{
}
template<class TInputImage,
class TMembershipFunction,
class TTrainingImage>
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>
::~ImageGaussianModelEstimator(void)
{
if ( m_Covariance ) delete [] m_Covariance;
}
/*
* PrintSelf
*/
template<class TInputImage,
class TMembershipFunction,
class TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << " " << std::endl;
os << indent << "Gaussian Models generated from the training data." << std::endl;
os << indent << "TrainingImage: " ;
os << m_TrainingImage.GetPointer() << std::endl;
os << indent << "Results printed in the superclass " << std::endl;
os << indent << " " << std::endl;
Superclass::PrintSelf(os,indent);
}// end PrintSelf
/**
* Generate data (start the model building process)
*/
template<class TInputImage,
class TMembershipFunction,
class TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>
::GenerateData( )
{
this->EstimateModels();
}// end Generate data
// Takes a set of training images and returns the means
// and variance of the various classes defined in the
// training set.
template<class TInputImage,
class TMembershipFunction,
class TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>
::EstimateModels()
{
//Do some error checking
InputImagePointer inputImage = this->GetInputImage();
// Check if the training and input image dimensions are same
if( (int)(TInputImage::ImageDimension) != (int)(TTrainingImage::ImageDimension) )
{
throw ExceptionObject(__FILE__, __LINE__,"Training and input image dimensions are not the same.",ITK_LOCATION);
}
InputImageSizeType
inputImageSize = inputImage->GetBufferedRegion().GetSize();
typedef InputImageSizeType TrainingImageSizeType;
TrainingImagePointer trainingImage = this->GetTrainingImage();
TrainingImageSizeType
trainingImageSize = trainingImage->GetBufferedRegion().GetSize();
// Check if size of the two inputs are same
for( unsigned int i = 0; i < TInputImage::ImageDimension; i++)
{
if( inputImageSize[i] != trainingImageSize[i] ) throw ExceptionObject(__FILE__, __LINE__,"Input image size is not the same as the training image size.",ITK_LOCATION);
}
//-------------------------------------------------------------------
// Set up the gaussian membership calculators
//-------------------------------------------------------------------
unsigned int numberOfModels = this->GetNumberOfModels();
//-------------------------------------------------------------------
// Call local function to estimate mean variances of the various
// class labels in the training set
// The statistics class functions have not been used since all the
// class statistics are calculated simultaneously here.
//-------------------------------------------------------------------
this->EstimateGaussianModelParameters();
//-------------------------------------------------------------------
// Populate the membership functions for all the classes
//-------------------------------------------------------------------
MembershipFunctionPointer membershipFunction;
for (unsigned int classIndex = 0 ; classIndex < numberOfModels ; classIndex++)
{
membershipFunction = TMembershipFunction::New() ;
membershipFunction->
SetNumberOfSamples( m_NumberOfSamples(classIndex, 0) ) ;
membershipFunction->
SetMean(m_Means.get_row( classIndex) ) ;
membershipFunction->
SetCovariance( m_Covariance[classIndex] ) ;
this->AddMembershipFunction( membershipFunction );
}
}// end train classifier
template<class TInputImage,
class TMembershipFunction,
class TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>
::EstimateGaussianModelParameters()
{
// Set the iterators and the pixel type definition for the input image
InputImagePointer inputImage = this->GetInputImage();
InputImageIterator inIt( inputImage, inputImage->GetBufferedRegion() );
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// Set the iterators and the pixel type definition for the training image
TrainingImagePointer trainingImage = this->GetTrainingImage();
TrainingImageIterator
trainingImageIt( trainingImage, trainingImage->GetBufferedRegion() );
//-------------------------------------------------------------------
unsigned int numberOfModels = (this->GetNumberOfModels());
//-------------------------------------------------------------------
// Set up the matrices to hold the means and the covariance for the
// training data
m_Means.set_size(numberOfModels, VectorDimension);
m_Means.fill(0);
m_NumberOfSamples.set_size(numberOfModels,1);
m_NumberOfSamples.fill(0);
// delete previous allocation first
if ( m_Covariance ) delete [] m_Covariance;
//Number of covariance matrices are equal to number of classes
m_Covariance = (MatrixType *) new MatrixType[numberOfModels];
for(unsigned int i = 0; i < numberOfModels; i++ )
{
m_Covariance[i].set_size( VectorDimension, VectorDimension );
m_Covariance[i].fill( 0 );
}
for( inIt.GoToBegin(); !inIt.IsAtEnd(); ++inIt, ++trainingImageIt )
{
unsigned int classIndex = (unsigned int) trainingImageIt.Get();
// Training data assumed =1 band; also the class indices go
// from 1, 2, ..., n while the corresponding memory goes from
// 0, 1, ..., n-1.
//Ensure that the training data is labelled appropriately
if( classIndex > numberOfModels )
{
throw ExceptionObject(__FILE__, __LINE__);
}
if(classIndex > 0)
{
m_NumberOfSamples[classIndex][0] +=1;
InputImagePixelType inImgVec = inIt.Get();
for(unsigned int band_x = 0; band_x < VectorDimension; band_x++)
{
m_Means[classIndex][band_x] += inImgVec[band_x];
for(unsigned int band_y = 0; band_y <= band_x; band_y++ )
{
m_Covariance[classIndex][band_x][band_y] += inImgVec[band_x] * inImgVec[band_y];
}
}
}
}// end for
//Loop through the classes to calculate the means and
for( unsigned int classIndex = 0; classIndex < numberOfModels; classIndex++ )
{
if( m_NumberOfSamples[classIndex][0] != 0 )
{
for( unsigned int i = 0; i < VectorDimension; i++ )
m_Means[classIndex][i] /= m_NumberOfSamples[classIndex][0];
}// end if
else
{
for( unsigned int i = 0; i < VectorDimension ; i++ )
m_Means[classIndex][i] = 0;
}// end else
if( ( m_NumberOfSamples[classIndex][0] - 1 ) != 0 )
{
for( unsigned int band_x = 0; band_x < VectorDimension; band_x++ )
{
for( unsigned int band_y=0; band_y <= band_x; band_y++ )
{
m_Covariance[classIndex][band_x][band_y]
/= (m_NumberOfSamples[classIndex][0]-1);
}// end for band_y loop
}// end for band_x loop
}// end if
else
{
for( unsigned int band_x = 0; band_x < VectorDimension; band_x++ )
for( unsigned int band_y = 0; band_y <= band_x; band_y++ )
m_Covariance[classIndex][band_x][band_y] = 0;
}// end else
MatrixType tempMeanSq;
tempMeanSq.set_size( VectorDimension, VectorDimension );
tempMeanSq.fill(0);
for( unsigned int band_x = 0; band_x < VectorDimension; band_x++)
{
for(unsigned int band_y=0; band_y<=band_x; band_y++)
{
tempMeanSq[band_x][band_y] =
m_Means[classIndex][band_x] * m_Means[classIndex][band_y];
}
}// end for band_x loop
if( ( m_NumberOfSamples[classIndex][0] - 1) != 0 )
{
tempMeanSq *= ( m_NumberOfSamples[classIndex][0]
/ (m_NumberOfSamples[classIndex][0] - 1 ) );
}
m_Covariance[classIndex] -= tempMeanSq;
// Fill the rest of the covairance matrix and make it symmetric
if(m_NumberOfSamples[classIndex][0] > 0)
{
unsigned int lastInX = (unsigned int)(VectorDimension - 1);
unsigned int upperY = (unsigned int)VectorDimension;
for(unsigned int band_x = 0; band_x < lastInX; band_x++)
{
for(unsigned int band_y=band_x+1; band_y < upperY; band_y++)
{
m_Covariance[classIndex][band_x][band_y]
= m_Covariance[classIndex][band_y][band_x];
}// end band_y loop
}// end band_x loop
}// end if loop
}// end class index loop
}// end EstimateGaussianModelParameters
} // namespace itk
#endif
|