1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkImageModelEstimatorBase.h,v $
Language: C++
Date: $Date: 2004-11-04 20:40:32 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkImageModelEstimatorBase_h
#define _itkImageModelEstimatorBase_h
#include "itkLightProcessObject.h"
namespace itk
{
/** \class ImageModelEstimatorBase
* \brief Base class for model estimation from images used for classification.
*
* itkImageModelEstimatorBase is the base class for the ImageModelEstimator
* objects. It provides the basic function definitions that are inherent to
* a ImageModelEstimator objects.
*
* This is the SuperClass for the ImageModelEstimator framework. This is an
* abstract class defining an interface for all such objects
* available through the ImageModelEstimator framework in the ITK toolkit.
*
* The basic functionality of the ImageModelEstimator framework base class is to
* generate the models used in classification applications. It requires input
* images and a training image to be provided by the user.
* This object supports data handling of multiband images. The object
* accepts the input image in vector format only, where each pixel is a
* vector and each element of the vector corresponds to an entry from
* 1 particular band of a multiband dataset. A single band image is treated
* as a vector image with a single element for every vector. The classified
* image is treated as a single band scalar image.
*
* EstimateModels() is a pure virtual function making this an abstract class.
* The template parameter is the type of a membership function the
* ImageModelEstimator populates.
*
* A membership function represents a specific knowledge about
* a class. In other words, it should tell us how "likely" is that a
* measurement vector (pattern) belong to the class.
*
* As the method name indicates, you can have more than one membership
* function. One for each classes. The order you put the membership
* calculator becomes the class label for the class that is represented
* by the membership calculator.
*
*
* \ingroup ClassificationFilters
*/
template <class TInputImage,
class TMembershipFunction>
class ITK_EXPORT ImageModelEstimatorBase: public LightProcessObject
{
public:
/** Standard class typedefs. */
typedef ImageModelEstimatorBase Self;
typedef LightProcessObject Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(ImageModelEstimatorBase,LightProcessObject);
/** Set the number of classes. */
itkSetMacro(NumberOfModels, unsigned int);
/** Get the number of classes. */
itkGetConstReferenceMacro(NumberOfModels, unsigned int);
/** Type definitions for the membership function . */
typedef typename TMembershipFunction::Pointer MembershipFunctionPointer ;
typedef std::vector< MembershipFunctionPointer >
MembershipFunctionPointerVector;
/** Type definitions for the training image. */
typedef TInputImage InputImageType;
typedef typename TInputImage::Pointer InputImagePointer;
/** Type definitions for the training image. */
//typedef typename TTrainingImage::Pointer TrainingImagePointer;
/** Set the input image. */
itkSetObjectMacro(InputImage,InputImageType);
/** Get the input image. */
itkGetObjectMacro(InputImage,InputImageType);
/** Set the classified image. */
void SetMembershipFunctions(MembershipFunctionPointerVector
membershipFunctions)
{
m_MembershipFunctions = membershipFunctions;
}
/** Method to get mean */
const MembershipFunctionPointerVector GetMembershipFunctions() const
{
return m_MembershipFunctions;
}
/** Method to number of membership functions */
unsigned int GetNumberOfMembershipFunctions()
{
return static_cast<unsigned int>( m_MembershipFunctions.size() );
}
/** Method to reset the membership fucntion mean */
void DeleteAllMembershipFunctions()
{
m_MembershipFunctions.resize(0);
}
/** Stores a MembershipCalculator of a class in its internal vector */
unsigned int AddMembershipFunction(MembershipFunctionPointer function);
/** Define a virtual function to perform model generation from the input data
*/
void Update() ;
protected:
ImageModelEstimatorBase();
~ImageModelEstimatorBase();
void PrintSelf(std::ostream& os, Indent indent) const;
virtual void GenerateData();
private:
ImageModelEstimatorBase(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
unsigned int m_NumberOfModels;
/** Container to hold the membership functions */
MembershipFunctionPointerVector m_MembershipFunctions;
/**Container for holding the training image */
InputImagePointer m_InputImage;
/** The core virtual function to perform modelling of the input data */
virtual void EstimateModels() = 0;
}; // class ImageModelEstimator
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkImageModelEstimatorBase.txx"
#endif
#endif
|