File: itkMattesMutualInformationImageToImageMetric.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (1706 lines) | stat: -rw-r--r-- 54,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkMattesMutualInformationImageToImageMetric.txx,v $
  Language:  C++
  Date:      $Date: 2008-03-27 13:45:10 $
  Version:   $Revision: 1.58 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkMattesMutualInformationImageToImageMetric_txx
#define _itkMattesMutualInformationImageToImageMetric_txx


// First make sure that the configuration is available.
// This line can be removed once the optimized versions
// gets integrated into the main directories.
#include "itkConfigure.h"

#ifdef ITK_USE_OPTIMIZED_REGISTRATION_METHODS
#include "itkOptMattesMutualInformationImageToImageMetric.txx"
#else


#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkCovariantVector.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"
#include "itkImageIterator.h"
#include "vnl/vnl_math.h"
#include "itkBSplineDeformableTransform.h"

namespace itk
{


/**
 * Constructor
 */
template < class TFixedImage, class TMovingImage >
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::MattesMutualInformationImageToImageMetric()
{

  m_NumberOfSpatialSamples = 500;
  m_NumberOfHistogramBins = 50;

  this->SetComputeGradient(false); // don't use the default gradient for now

  m_InterpolatorIsBSpline = false;
  m_TransformIsBSpline    = false;

  // Initialize PDFs to NULL
  m_JointPDF = NULL;
  m_JointPDFDerivatives = NULL;

  m_UseExplicitPDFDerivatives = true;

  typename BSplineTransformType::Pointer transformer =
           BSplineTransformType::New();
  this->SetTransform (transformer);

  typename BSplineInterpolatorType::Pointer interpolator =
           BSplineInterpolatorType::New();
  this->SetInterpolator (interpolator);

  // Initialize memory
  m_MovingImageNormalizedMin = 0.0;
  m_FixedImageNormalizedMin = 0.0;
  m_MovingImageTrueMin = 0.0;
  m_MovingImageTrueMax = 0.0;
  m_FixedImageBinSize = 0.0;
  m_MovingImageBinSize = 0.0;
  m_CubicBSplineDerivativeKernel = NULL;
  m_BSplineInterpolator = NULL;
  m_DerivativeCalculator = NULL;
  m_NumParametersPerDim = 0;
  m_NumBSplineWeights = 0;
  m_BSplineTransform = NULL;
  m_NumberOfParameters = 0;
  m_UseAllPixels = false;
  m_ReseedIterator = false;
  m_RandomSeed = -1;
  m_UseCachingOfBSplineWeights = true;
}


/**
 * Print out internal information about this class
 */
template < class TFixedImage, class TMovingImage  >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  
  Superclass::PrintSelf(os, indent);

  os << indent << "NumberOfSpatialSamples: ";
  os << m_NumberOfSpatialSamples << std::endl;
  os << indent << "NumberOfHistogramBins: ";
  os << m_NumberOfHistogramBins << std::endl;
  os << indent << "UseAllPixels: ";
  os << m_UseAllPixels << std::endl;

  // Debugging information
  os << indent << "NumberOfParameters: ";
  os << m_NumberOfParameters << std::endl;
  os << indent << "FixedImageNormalizedMin: ";
  os << m_FixedImageNormalizedMin << std::endl;
  os << indent << "MovingImageNormalizedMin: ";
  os << m_MovingImageNormalizedMin << std::endl;
  os << indent << "MovingImageTrueMin: ";
  os << m_MovingImageTrueMin << std::endl;
  os << indent << "MovingImageTrueMax: ";
  os << m_MovingImageTrueMax << std::endl;
  os << indent << "FixedImageBinSize: "; 
  os << m_FixedImageBinSize << std::endl;
  os << indent << "MovingImageBinSize: ";
  os << m_MovingImageBinSize << std::endl;
  os << indent << "InterpolatorIsBSpline: ";
  os << m_InterpolatorIsBSpline << std::endl;
  os << indent << "TransformIsBSpline: ";
  os << m_TransformIsBSpline << std::endl;
  os << indent << "UseCachingOfBSplineWeights: ";
  os << m_UseCachingOfBSplineWeights << std::endl;
  os << indent << "UseExplicitPDFDerivatives: ";
  os << m_UseExplicitPDFDerivatives << std::endl;
  
}


/**
 * Initialize
 */
template <class TFixedImage, class TMovingImage> 
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::Initialize(void) throw ( ExceptionObject )
{
  this->Superclass::Initialize();
  
  // Cache the number of transformation parameters
  m_NumberOfParameters = this->m_Transform->GetNumberOfParameters();

  /**
   * Compute the minimum and maximum for the FixedImage over
   * the FixedImageRegion.
   *
   * NB: We can't use StatisticsImageFilter to do this because
   * the filter computes the min/max for the largest possible region
   */
  double fixedImageMin = NumericTraits<double>::max();
  double fixedImageMax = NumericTraits<double>::NonpositiveMin();

  typedef ImageRegionConstIterator<FixedImageType> FixedIteratorType;
  FixedIteratorType fixedImageIterator( 
    this->m_FixedImage, this->GetFixedImageRegion() );

  for ( fixedImageIterator.GoToBegin(); 
        !fixedImageIterator.IsAtEnd(); ++fixedImageIterator )
    {

    double sample = static_cast<double>( fixedImageIterator.Get() );

    if ( sample < fixedImageMin )
      {
      fixedImageMin = sample;
      }

    if ( sample > fixedImageMax )
      {
      fixedImageMax = sample;
      }
    }


  /**
   * Compute the minimum and maximum for the entire moving image
   * in the buffer.
   */
  double movingImageMin = NumericTraits<double>::max();
  double movingImageMax = NumericTraits<double>::NonpositiveMin();

  typedef ImageRegionConstIterator<MovingImageType> MovingIteratorType;
  MovingIteratorType movingImageIterator(
    this->m_MovingImage, this->m_MovingImage->GetBufferedRegion() );

  for ( movingImageIterator.GoToBegin(); 
        !movingImageIterator.IsAtEnd(); ++movingImageIterator)
    {
    double sample = static_cast<double>( movingImageIterator.Get() );

    if ( sample < movingImageMin )
      {
      movingImageMin = sample;
      }

    if ( sample > movingImageMax )
      {
      movingImageMax = sample;
      }
    }

  m_MovingImageTrueMin = movingImageMin;
  m_MovingImageTrueMax = movingImageMax;

  itkDebugMacro( " FixedImageMin: " << fixedImageMin << 
                 " FixedImageMax: " << fixedImageMax << std::endl );
  itkDebugMacro( " MovingImageMin: " << movingImageMin << 
                 " MovingImageMax: " << movingImageMax << std::endl );


  /**
   * Compute binsize for the histograms.
   *
   * The binsize for the image intensities needs to be adjusted so that 
   * we can avoid dealing with boundary conditions using the cubic 
   * spline as the Parzen window.  We do this by increasing the size
   * of the bins so that the joint histogram becomes "padded" at the 
   * borders. Because we are changing the binsize, 
   * we also need to shift the minimum by the padded amount in order to 
   * avoid minimum values filling in our padded region.
   *
   * Note that there can still be non-zero bin values in the padded region,
   * it's just that these bins will never be a central bin for the Parzen
   * window.
   *
   */
  const int padding = 2;  // this will pad by 2 bins

  m_FixedImageBinSize = ( fixedImageMax - fixedImageMin ) /
    static_cast<double>( m_NumberOfHistogramBins - 2 * padding );
  m_FixedImageNormalizedMin = fixedImageMin / m_FixedImageBinSize - 
    static_cast<double>( padding );

  m_MovingImageBinSize = ( movingImageMax - movingImageMin ) /
    static_cast<double>( m_NumberOfHistogramBins - 2 * padding );
  m_MovingImageNormalizedMin = movingImageMin / m_MovingImageBinSize -
    static_cast<double>( padding );


  itkDebugMacro( "FixedImageNormalizedMin: " << m_FixedImageNormalizedMin );
  itkDebugMacro( "MovingImageNormalizedMin: " << m_MovingImageNormalizedMin );
  itkDebugMacro( "FixedImageBinSize: " << m_FixedImageBinSize );
  itkDebugMacro( "MovingImageBinSize; " << m_MovingImageBinSize );
  
  if( m_UseAllPixels )
    {
    m_NumberOfSpatialSamples = 
              this->GetFixedImageRegion().GetNumberOfPixels();
    }
  
  /**
   * Allocate memory for the fixed image sample container.
   */
  m_FixedImageSamples.resize( m_NumberOfSpatialSamples );


  /**
   * Allocate memory for the marginal PDF and initialize values
   * to zero. The marginal PDFs are stored as std::vector.
   */
  m_FixedImageMarginalPDF.resize( m_NumberOfHistogramBins, 0.0 );
  m_MovingImageMarginalPDF.resize( m_NumberOfHistogramBins, 0.0 );

  /**
   * Allocate memory for the joint PDF and joint PDF derivatives.
   * The joint PDF and joint PDF derivatives are store as itk::Image.
   */
  m_JointPDF = JointPDFType::New();

  // Instantiate a region, index, size
  JointPDFRegionType            jointPDFRegion;
  JointPDFIndexType              jointPDFIndex;
  JointPDFSizeType              jointPDFSize;

  // Deallocate the memory that may have been allocated for 
  // previous runs of the metric.
  this->m_JointPDFDerivatives = NULL;  // by destroying the dynamic array
  this->m_PRatioArray.SetSize( 1, 1 ); // and by allocating very small the static ones
  this->m_MetricDerivative = DerivativeType( 1 );
    
  // 
  // Now allocate memory according to the user-selected method.
  //
  if( this->m_UseExplicitPDFDerivatives )
    {
    this->m_JointPDFDerivatives = JointPDFDerivativesType::New();
    JointPDFDerivativesRegionType  jointPDFDerivativesRegion;
    JointPDFDerivativesIndexType  jointPDFDerivativesIndex;
    JointPDFDerivativesSizeType    jointPDFDerivativesSize;

    // For the derivatives of the joint PDF define a region starting from {0,0,0} 
    // with size {m_NumberOfParameters,m_NumberOfHistogramBins, 
    // m_NumberOfHistogramBins}. The dimension represents transform parameters,
    // fixed image parzen window index and moving image parzen window index,
    // respectively. 
    jointPDFDerivativesIndex.Fill( 0 ); 
    jointPDFDerivativesSize[0] = m_NumberOfParameters;
    jointPDFDerivativesSize[1] = m_NumberOfHistogramBins;
    jointPDFDerivativesSize[2] = m_NumberOfHistogramBins;

    jointPDFDerivativesRegion.SetIndex( jointPDFDerivativesIndex );
    jointPDFDerivativesRegion.SetSize( jointPDFDerivativesSize );

    // Set the regions and allocate
    m_JointPDFDerivatives->SetRegions( jointPDFDerivativesRegion );
    m_JointPDFDerivatives->Allocate();
    }
  else
    {
    /** Allocate memory for helper array that will contain the pRatios
     *  for each bin of the joint histogram. This is part of the effort
     *  for flattening the computation of the PDF Jacobians.
     */
    this->m_PRatioArray.SetSize( this->m_NumberOfHistogramBins, this->m_NumberOfHistogramBins );
    this->m_MetricDerivative = DerivativeType( this->GetNumberOfParameters() );
    }

  // For the joint PDF define a region starting from {0,0} 
  // with size {m_NumberOfHistogramBins, m_NumberOfHistogramBins}.
  // The dimension represents fixed image parzen window index
  // and moving image parzen window index, respectively.
  jointPDFIndex.Fill( 0 ); 
  jointPDFSize.Fill( m_NumberOfHistogramBins ); 

  jointPDFRegion.SetIndex( jointPDFIndex );
  jointPDFRegion.SetSize( jointPDFSize );

  // Set the regions and allocate
  m_JointPDF->SetRegions( jointPDFRegion );
  m_JointPDF->Allocate();


  /**
   * Setup the kernels used for the Parzen windows.
   */
  m_CubicBSplineKernel = CubicBSplineFunctionType::New();
  m_CubicBSplineDerivativeKernel = CubicBSplineDerivativeFunctionType::New();    


  if( m_UseAllPixels )
    {
    /** 
     * Take all the pixels within the fixed image region)
     * to create the sample points list.
     */
    this->SampleFullFixedImageDomain( m_FixedImageSamples );
    }
  else
    {
    /** 
     * Uniformly sample the fixed image (within the fixed image region)
     * to create the sample points list.
     */
    this->SampleFixedImageDomain( m_FixedImageSamples );
    }

  /**
   * Pre-compute the fixed image parzen window index for 
   * each point of the fixed image sample points list.
   */
  this->ComputeFixedImageParzenWindowIndices( m_FixedImageSamples );
  
  /**
   * Check if the interpolator is of type BSplineInterpolateImageFunction.
   * If so, we can make use of its EvaluateDerivatives method.
   * Otherwise, we instantiate an external central difference
   * derivative calculator.
   *
   * TODO: Also add it the possibility of using the default gradient
   * provided by the superclass.
   *
   */
  m_InterpolatorIsBSpline = true;

  BSplineInterpolatorType * testPtr = dynamic_cast<BSplineInterpolatorType *>(
    this->m_Interpolator.GetPointer() );
  if ( !testPtr )
    {
    m_InterpolatorIsBSpline = false;

    m_DerivativeCalculator = DerivativeFunctionType::New();

#ifdef ITK_USE_ORIENTED_IMAGE_DIRECTION
    m_DerivativeCalculator->UseImageDirectionOn();
#endif

    m_DerivativeCalculator->SetInputImage( this->m_MovingImage );

    m_BSplineInterpolator = NULL;
    itkDebugMacro( "Interpolator is not BSpline" );
    } 
  else
    {
    m_BSplineInterpolator = testPtr;

#ifdef ITK_USE_ORIENTED_IMAGE_DIRECTION
    m_BSplineInterpolator->UseImageDirectionOn();
#endif

    m_DerivativeCalculator = NULL;
    itkDebugMacro( "Interpolator is BSpline" );
    }

  /** 
   * Check if the transform is of type BSplineDeformableTransform.
   *
   * If so, several speed up features are implemented.
   * [1] Precomputing the results of bulk transform for each sample point.
   * [2] Precomputing the BSpline weights for each sample point,
   *     to be used later to directly compute the deformation vector
   * [3] Precomputing the indices of the parameters within the 
   *     the support region of each sample point.
   */
  m_TransformIsBSpline = true;

  BSplineTransformType * testPtr2 = dynamic_cast<BSplineTransformType *>(
    this->m_Transform.GetPointer() );
  if( !testPtr2 )
    {
    m_TransformIsBSpline = false;
    m_BSplineTransform = NULL;
    itkDebugMacro( "Transform is not BSplineDeformable" );
    }
  else
    {
    m_BSplineTransform = testPtr2;
    m_NumParametersPerDim = 
            m_BSplineTransform->GetNumberOfParametersPerDimension();
    m_NumBSplineWeights = m_BSplineTransform->GetNumberOfWeights();
    itkDebugMacro( "Transform is BSplineDeformable" );
    }

  if( this->m_TransformIsBSpline )
    {
    // First, deallocate memory that may have been used from previous run of the Metric
    this->m_BSplineTransformWeightsArray.SetSize( 1, 1 );
    this->m_BSplineTransformIndicesArray.SetSize( 1, 1 );
    this->m_PreTransformPointsArray.resize( 1 );
    this->m_WithinSupportRegionArray.resize( 1 );
    this->m_Weights.SetSize( 1 );
    this->m_Indices.SetSize( 1 );


    if( this->m_UseCachingOfBSplineWeights )
      {
      m_BSplineTransformWeightsArray.SetSize( 
        m_NumberOfSpatialSamples, m_NumBSplineWeights );
      m_BSplineTransformIndicesArray.SetSize( 
        m_NumberOfSpatialSamples, m_NumBSplineWeights );
      m_PreTransformPointsArray.resize( m_NumberOfSpatialSamples );
      m_WithinSupportRegionArray.resize( m_NumberOfSpatialSamples );

      this->PreComputeTransformValues();
      }
    else
      {
      this->m_Weights.SetSize( this->m_NumBSplineWeights );
      this->m_Indices.SetSize( this->m_NumBSplineWeights );
      }

    for ( unsigned int j = 0; j < FixedImageDimension; j++ )
      {
      m_ParametersOffset[j] = j * 
        m_BSplineTransform->GetNumberOfParametersPerDimension(); 
      }
    }

}


/**
 * Uniformly sample the fixed image domain using a random walk
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::SampleFixedImageDomain( FixedImageSpatialSampleContainer& samples )
{

  // Set up a random interator within the user specified fixed image region.
  typedef ImageRandomConstIteratorWithIndex<FixedImageType> RandomIterator;
  RandomIterator randIter( this->m_FixedImage, this->GetFixedImageRegion() );

  randIter.SetNumberOfSamples( m_NumberOfSpatialSamples );
  randIter.GoToBegin();

  typename FixedImageSpatialSampleContainer::iterator iter;
  typename FixedImageSpatialSampleContainer::const_iterator end=samples.end();

  if( this->m_FixedImageMask )
    {

    InputPointType inputPoint;

    iter=samples.begin();
    int count = 0;
    int samples_found = 0;
    int maxcount = m_NumberOfSpatialSamples * 10;
    while( iter != end )
      {

      if ( count > maxcount )
        {
#if 0
        itkExceptionMacro( 
                  "Drew too many samples from the mask (is it too small?): "
                  << maxcount << std::endl );
#else
        samples.resize(samples_found);
        //        this->SetNumberOfSpatialSamples(sample_found);
        break;
#endif
        }
      count++;
      
      // Get sampled index
      FixedImageIndexType index = randIter.GetIndex();
      // Check if the Index is inside the mask, translate index to point
      this->m_FixedImage->TransformIndexToPhysicalPoint( index, inputPoint );

      // If not inside the mask, ignore the point
      if( !this->m_FixedImageMask->IsInside( inputPoint ) )
        {
        ++randIter; // jump to another random position
        continue;
        }

      // Get sampled fixed image value
      (*iter).FixedImageValue = randIter.Get();
      // Translate index to point
      (*iter).FixedImagePointValue = inputPoint;
      samples_found++;
      // Jump to random position
      ++randIter;
      ++iter;
      }
    }
  else
    {
    for( iter=samples.begin(); iter != end; ++iter )
      {
      // Get sampled index
      FixedImageIndexType index = randIter.GetIndex();
      // Get sampled fixed image value
      (*iter).FixedImageValue = randIter.Get();
      // Translate index to point
      this->m_FixedImage->TransformIndexToPhysicalPoint( index,
                                                (*iter).FixedImagePointValue );
      // Jump to random position
      ++randIter;

      }
    }
}

/**
 * Sample the fixed image domain using all pixels in the Fixed image region
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::SampleFullFixedImageDomain( FixedImageSpatialSampleContainer& samples )
{

  // Set up a region interator within the user specified fixed image region.
  typedef ImageRegionConstIteratorWithIndex<FixedImageType> RegionIterator;
  RegionIterator regionIter( this->m_FixedImage, this->GetFixedImageRegion() );

  regionIter.GoToBegin();

  typename FixedImageSpatialSampleContainer::iterator iter;
  typename FixedImageSpatialSampleContainer::const_iterator end=samples.end();

  if( this->m_FixedImageMask )
    {
    InputPointType inputPoint;

    iter=samples.begin();
    unsigned long nSamplesPicked = 0;

    while( iter != end && !regionIter.IsAtEnd() )
      {
      // Get sampled index
      FixedImageIndexType index = regionIter.GetIndex();
      // Check if the Index is inside the mask, translate index to point
      this->m_FixedImage->TransformIndexToPhysicalPoint( index, inputPoint );

      // If not inside the mask, ignore the point
      if( !this->m_FixedImageMask->IsInside( inputPoint ) )
        {
        ++regionIter; // jump to next pixel
        continue;
        }

      // Get sampled fixed image value
      (*iter).FixedImageValue = regionIter.Get();
      // Translate index to point
      (*iter).FixedImagePointValue = inputPoint;

      ++regionIter;
      ++iter;
      ++nSamplesPicked;
      }

    // If we picked fewer samples than the desired number, 
    // resize the container
    if (nSamplesPicked != this->m_NumberOfSpatialSamples)
      {
      this->m_NumberOfSpatialSamples = nSamplesPicked;
      samples.resize(this->m_NumberOfSpatialSamples);
      }
    }
  else // not restricting sample throwing to a mask
    {

    // cannot sample more than the number of pixels in the image region
    if (  this->m_NumberOfSpatialSamples 
        > this->GetFixedImageRegion().GetNumberOfPixels())
      {
      this->m_NumberOfSpatialSamples 
        = this->GetFixedImageRegion().GetNumberOfPixels();
      samples.resize(this->m_NumberOfSpatialSamples);
      }
      
    for( iter=samples.begin(); iter != end; ++iter )
      {
      // Get sampled index
      FixedImageIndexType index = regionIter.GetIndex();
      // Get sampled fixed image value
      (*iter).FixedImageValue = regionIter.Get();
      // Translate index to point
      this->m_FixedImage->TransformIndexToPhysicalPoint( index,
                                               (*iter).FixedImagePointValue );
      ++regionIter;
      }
    }
}

/**
 * Uniformly sample the fixed image domain using a random walk
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ComputeFixedImageParzenWindowIndices( 
           FixedImageSpatialSampleContainer& samples )
{

  typename FixedImageSpatialSampleContainer::iterator iter;
  typename FixedImageSpatialSampleContainer::const_iterator end=samples.end();

  for( iter=samples.begin(); iter != end; ++iter )
    {

    // Determine parzen window arguments (see eqn 6 of Mattes paper [2]).  
    double windowTerm =
      static_cast<double>( (*iter).FixedImageValue ) / m_FixedImageBinSize -
        m_FixedImageNormalizedMin;
    unsigned int pindex = static_cast<unsigned int>( vcl_floor(windowTerm ) );

    // Make sure the extreme values are in valid bins
    if ( pindex < 2 )
      {
      pindex = 2;
      }
    else if ( pindex > (m_NumberOfHistogramBins - 3) )
      {
      pindex = m_NumberOfHistogramBins - 3;
      }

    (*iter).FixedImageParzenWindowIndex = pindex;

    }

}

/**
 * Get the match Measure
 */
template < class TFixedImage, class TMovingImage  >
typename MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::MeasureType
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::GetValue( const ParametersType& parameters ) const
{

  // Reset marginal pdf to all zeros.
  // Assumed the size has already been set to NumberOfHistogramBins
  // in Initialize().
  for ( unsigned int j = 0; j < m_NumberOfHistogramBins; j++ )
    {
    m_FixedImageMarginalPDF[j]  = 0.0;
    m_MovingImageMarginalPDF[j] = 0.0;
    }

  // Reset the joint pdfs to zero
  m_JointPDF->FillBuffer( 0.0 );

  // Set up the parameters in the transform
  this->m_Transform->SetParameters( parameters );


  // Declare iterators for iteration over the sample container
  typename FixedImageSpatialSampleContainer::const_iterator fiter;
  typename FixedImageSpatialSampleContainer::const_iterator fend = 
    m_FixedImageSamples.end();

  unsigned long nSamples=0;
  unsigned long nFixedImageSamples=0;


  for ( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter )
    {

    // Get moving image value
    MovingImagePointType mappedPoint;
    bool sampleOk;
    double movingImageValue;

    this->TransformPoint( nFixedImageSamples, parameters, mappedPoint, 
                          sampleOk, movingImageValue );

    ++nFixedImageSamples;

    if( sampleOk )
      {

      ++nSamples; 

      /**
       * Compute this sample's contribution to the marginal and 
       * joint distributions.
       *
       */

      // Determine parzen window arguments (see eqn 6 of Mattes paper [2]).    
      double movingImageParzenWindowTerm =
        movingImageValue / m_MovingImageBinSize - m_MovingImageNormalizedMin;
      unsigned int movingImageParzenWindowIndex = 
        static_cast<unsigned int>( vcl_floor(movingImageParzenWindowTerm ) );

      // Make sure the extreme values are in valid bins
      if ( movingImageParzenWindowIndex < 2 )
        {
        movingImageParzenWindowIndex = 2;
        }
      else if ( movingImageParzenWindowIndex > (m_NumberOfHistogramBins - 3) )
        {
        movingImageParzenWindowIndex = m_NumberOfHistogramBins - 3;
        }


      // Since a zero-order BSpline (box car) kernel is used for
      // the fixed image marginal pdf, we need only increment the
      // fixedImageParzenWindowIndex by value of 1.0.
      m_FixedImageMarginalPDF[(*fiter).FixedImageParzenWindowIndex] += 
        static_cast<PDFValueType>( 1 );
        
      /**
        * The region of support of the parzen window determines which bins
        * of the joint PDF are effected by the pair of image values.
        * Since we are using a cubic spline for the moving image parzen
        * window, four bins are affected.  The fixed image parzen window is
        * a zero-order spline (box car) and thus effects only one bin.
        *
        *  The PDF is arranged so that moving image bins corresponds to the 
        * zero-th (column) dimension and the fixed image bins corresponds
        * to the first (row) dimension.
        *
        */
      
      // Pointer to affected bin to be updated
      JointPDFValueType *pdfPtr = m_JointPDF->GetBufferPointer() +
                                   ( (*fiter).FixedImageParzenWindowIndex 
                                     * m_JointPDF->GetOffsetTable()[1] );
 
      // Move the pointer to the first affected bin
      int pdfMovingIndex = static_cast<int>( movingImageParzenWindowIndex ) - 1;
      pdfPtr += pdfMovingIndex;

      for (; pdfMovingIndex <= static_cast<int>( movingImageParzenWindowIndex )
                                + 2;
            pdfMovingIndex++, pdfPtr++ )
        {

        // Update PDF for the current intensity pair
        double movingImageParzenWindowArg = 
          static_cast<double>( pdfMovingIndex ) - 
          static_cast<double>( movingImageParzenWindowTerm );

        *(pdfPtr) += static_cast<PDFValueType>( 
          m_CubicBSplineKernel->Evaluate( movingImageParzenWindowArg ) );

        }  //end parzen windowing for loop

      } //end if-block check sampleOk
    } // end iterating over fixed image spatial sample container for loop

  itkDebugMacro( "Ratio of voxels mapping into moving image buffer: " 
                 << nSamples << " / " << m_NumberOfSpatialSamples 
                 << std::endl );

  if( nSamples < m_NumberOfSpatialSamples / 4 )
    {
    itkExceptionMacro( "Too many samples map outside moving image buffer: "
                       << nSamples << " / " << m_NumberOfSpatialSamples 
                       << std::endl );
    }


  /**
   * Normalize the PDFs, compute moving image marginal PDF
   *
   */
  typedef ImageRegionIterator<JointPDFType> JointPDFIteratorType;
  JointPDFIteratorType jointPDFIterator ( m_JointPDF,
                                          m_JointPDF->GetBufferedRegion() );

  jointPDFIterator.GoToBegin();
  
  // Compute joint PDF normalization factor 
  // (to ensure joint PDF sum adds to 1.0)
  double jointPDFSum = 0.0;

  while( !jointPDFIterator.IsAtEnd() )
    {
    jointPDFSum += jointPDFIterator.Get();
    ++jointPDFIterator;
    }

  if ( jointPDFSum == 0.0 )
    {
    itkExceptionMacro( "Joint PDF summed to zero" );
    }


  // Normalize the PDF bins
  jointPDFIterator.GoToEnd();
  while( !jointPDFIterator.IsAtBegin() )
    {
    --jointPDFIterator;
    jointPDFIterator.Value() /= static_cast<PDFValueType>( jointPDFSum );
    }


  // Normalize the fixed image marginal PDF
  double fixedPDFSum = 0.0;
  for( unsigned int bin = 0; bin < m_NumberOfHistogramBins; bin++ )
    {
    fixedPDFSum += m_FixedImageMarginalPDF[bin];
    }

  if ( fixedPDFSum == 0.0 )
    {
    itkExceptionMacro( "Fixed image marginal PDF summed to zero" );
    }

  for( unsigned int bin=0; bin < m_NumberOfHistogramBins; bin++ )
    {
    m_FixedImageMarginalPDF[bin] /= static_cast<PDFValueType>( fixedPDFSum );
    }


  // Compute moving image marginal PDF by summing over fixed image bins.
  typedef ImageLinearIteratorWithIndex<JointPDFType> JointPDFLinearIterator;
  JointPDFLinearIterator linearIter( m_JointPDF,
                                     m_JointPDF->GetBufferedRegion() );

  linearIter.SetDirection( 1 );
  linearIter.GoToBegin();
  unsigned int movingIndex = 0;

  while( !linearIter.IsAtEnd() )
    {

    double sum = 0.0;

    while( !linearIter.IsAtEndOfLine() )
      {
      sum += linearIter.Get();
      ++linearIter;
      }

    m_MovingImageMarginalPDF[movingIndex] = static_cast<PDFValueType>(sum);

    linearIter.NextLine();
    ++movingIndex;

    }

  /**
   * Compute the metric by double summation over histogram.
   */

  // Setup pointer to point to the first bin
  JointPDFValueType * jointPDFPtr = m_JointPDF->GetBufferPointer();

  // Initialze sum to zero
  double sum = 0.0;

  for( unsigned int fixedIndex = 0;
       fixedIndex < m_NumberOfHistogramBins;
       ++fixedIndex )
    {

    double fixedImagePDFValue = m_FixedImageMarginalPDF[fixedIndex];

    for( unsigned int movingIndex = 0;
         movingIndex < m_NumberOfHistogramBins; 
         ++movingIndex, jointPDFPtr++ )      
      {

      double movingImagePDFValue = m_MovingImageMarginalPDF[movingIndex];
      double jointPDFValue = *(jointPDFPtr);

      // check for non-zero bin contribution
      if( jointPDFValue > 1e-16 &&  movingImagePDFValue > 1e-16 )
        {

        double pRatio = vcl_log(jointPDFValue / movingImagePDFValue );
        if( fixedImagePDFValue > 1e-16)
          {
          sum += jointPDFValue * ( pRatio - vcl_log(fixedImagePDFValue ) );
          }

        }  // end if-block to check non-zero bin contribution
      }  // end for-loop over moving index
    }  // end for-loop over fixed index

  return static_cast<MeasureType>( -1.0 * sum );

}


/**
 * Get the both Value and Derivative Measure
 */
template < class TFixedImage, class TMovingImage  >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::GetValueAndDerivative(
  const ParametersType& parameters,
  MeasureType& value,
  DerivativeType& derivative) const
{

  // Set output values to zero
  value = NumericTraits< MeasureType >::Zero;

  if( this->m_UseExplicitPDFDerivatives )
    {
    m_JointPDFDerivatives->FillBuffer( 0.0 );
    derivative = DerivativeType( this->GetNumberOfParameters() );
    derivative.Fill( NumericTraits< MeasureType >::Zero );
    }
  else
    {
    this->m_MetricDerivative.Fill( NumericTraits< MeasureType >::Zero );
    this->m_PRatioArray.Fill( 0.0 );
    }

  // Reset marginal pdf to all zeros.
  // Assumed the size has already been set to NumberOfHistogramBins
  // in Initialize().
  for ( unsigned int j = 0; j < m_NumberOfHistogramBins; j++ )
    {
    m_FixedImageMarginalPDF[j]  = 0.0;
    m_MovingImageMarginalPDF[j] = 0.0;
    }

  // Reset the joint pdfs to zero
  m_JointPDF->FillBuffer( 0.0 );


  // Set up the parameters in the transform
  this->m_Transform->SetParameters( parameters );


  // Declare iterators for iteration over the sample container
  typename FixedImageSpatialSampleContainer::const_iterator fiter;
  typename FixedImageSpatialSampleContainer::const_iterator fend = 
    m_FixedImageSamples.end();

  unsigned long nSamples=0;
  unsigned long nFixedImageSamples=0;

  for ( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter )
    {

    // Get moving image value
    MovingImagePointType mappedPoint;
    bool sampleOk;
    double movingImageValue;

    this->TransformPoint( nFixedImageSamples, parameters, mappedPoint, 
                          sampleOk, movingImageValue );

    if( sampleOk )
      {
      ++nSamples; 

      // Get moving image derivative at the mapped position
      ImageDerivativesType movingImageGradientValue;
      this->ComputeImageDerivatives( mappedPoint, movingImageGradientValue );


      /**
       * Compute this sample's contribution to the marginal 
       *   and joint distributions.
       *
       */

      // Determine parzen window arguments (see eqn 6 of Mattes paper [2]).    
      double movingImageParzenWindowTerm =
        movingImageValue / m_MovingImageBinSize - m_MovingImageNormalizedMin;
      unsigned int movingImageParzenWindowIndex = 
        static_cast<unsigned int>( vcl_floor(movingImageParzenWindowTerm ) );

     // Make sure the extreme values are in valid bins     
      if ( movingImageParzenWindowIndex < 2 )
        {
        movingImageParzenWindowIndex = 2;
        }
      else if ( movingImageParzenWindowIndex > (m_NumberOfHistogramBins - 3) )
        {
        movingImageParzenWindowIndex = m_NumberOfHistogramBins - 3;
        }


      // Since a zero-order BSpline (box car) kernel is used for
      // the fixed image marginal pdf, we need only increment the
      // fixedImageParzenWindowIndex by value of 1.0.
     m_FixedImageMarginalPDF[(*fiter).FixedImageParzenWindowIndex] +=
        static_cast<PDFValueType>( 1 );
        
      /**
        * The region of support of the parzen window determines which bins
        * of the joint PDF are effected by the pair of image values.
        * Since we are using a cubic spline for the moving image parzen
        * window, four bins are effected.  The fixed image parzen window is
        * a zero-order spline (box car) and thus effects only one bin.
        *
        *  The PDF is arranged so that moving image bins corresponds to the 
        * zero-th (column) dimension and the fixed image bins corresponds
        * to the first (row) dimension.
        *
        */

      // Pointer to affected bin to be updated
      JointPDFValueType *pdfPtr = m_JointPDF->GetBufferPointer() +
        ( (*fiter).FixedImageParzenWindowIndex * m_NumberOfHistogramBins );
 
      // Move the pointer to the fist affected bin
      int pdfMovingIndex = static_cast<int>( movingImageParzenWindowIndex ) - 1;
      pdfPtr += pdfMovingIndex;

      for (; pdfMovingIndex <= static_cast<int>( movingImageParzenWindowIndex )
                                + 2;
             pdfMovingIndex++, pdfPtr++ )
        {
        // Update PDF for the current intensity pair
        double movingImageParzenWindowArg = 
          static_cast<double>( pdfMovingIndex ) - 
          static_cast<double>(movingImageParzenWindowTerm);

        *(pdfPtr) += static_cast<PDFValueType>( 
          m_CubicBSplineKernel->Evaluate( movingImageParzenWindowArg ) );

        if( this->m_UseExplicitPDFDerivatives )
          {
          // Compute the cubicBSplineDerivative for later repeated use.
          double cubicBSplineDerivativeValue = 
            m_CubicBSplineDerivativeKernel->Evaluate( 
                                                 movingImageParzenWindowArg );

          // Compute PDF derivative contribution.
          this->ComputePDFDerivatives( nFixedImageSamples,
                                       pdfMovingIndex, 
                                       movingImageGradientValue, 
                                       cubicBSplineDerivativeValue );
          }

        }  //end parzen windowing for loop

      } //end if-block check sampleOk

    ++nFixedImageSamples;

    } // end iterating over fixed image spatial sample container for loop

  itkDebugMacro( "Ratio of voxels mapping into moving image buffer: " 
                 << nSamples << " / " << m_NumberOfSpatialSamples 
                 << std::endl );

  if( nSamples < m_NumberOfSpatialSamples / 4 )
    {
    itkExceptionMacro( "Too many samples map outside moving image buffer: "
                       << nSamples << " / " << m_NumberOfSpatialSamples 
                       << std::endl );
    }

  this->m_NumberOfPixelsCounted = nSamples;

  /**
   * Normalize the PDFs, compute moving image marginal PDF
   *
   */
  typedef ImageRegionIterator<JointPDFType> JointPDFIteratorType;
  JointPDFIteratorType jointPDFIterator ( m_JointPDF,
                                          m_JointPDF->GetBufferedRegion() );

  jointPDFIterator.GoToBegin();
  

  // Compute joint PDF normalization factor 
  // (to ensure joint PDF sum adds to 1.0)
  double jointPDFSum = 0.0;

  while( !jointPDFIterator.IsAtEnd() )
    {
    jointPDFSum += jointPDFIterator.Get();
    ++jointPDFIterator;
    }

  if ( jointPDFSum == 0.0 )
    {
    itkExceptionMacro( "Joint PDF summed to zero" );
    }


  // Normalize the PDF bins
  jointPDFIterator.GoToEnd();
  while( !jointPDFIterator.IsAtBegin() )
    {
    --jointPDFIterator;
    jointPDFIterator.Value() /= static_cast<PDFValueType>( jointPDFSum );
    }


  // Normalize the fixed image marginal PDF
  double fixedPDFSum = 0.0;
  for( unsigned int bin = 0; bin < m_NumberOfHistogramBins; bin++ )
    {
    fixedPDFSum += m_FixedImageMarginalPDF[bin];
    }

  if ( fixedPDFSum == 0.0 )
    {
    itkExceptionMacro( "Fixed image marginal PDF summed to zero" );
    }

  for( unsigned int bin=0; bin < m_NumberOfHistogramBins; bin++ )
    {
    m_FixedImageMarginalPDF[bin] /= static_cast<PDFValueType>( fixedPDFSum );
    }


  // Compute moving image marginal PDF by summing over fixed image bins.
  typedef ImageLinearIteratorWithIndex<JointPDFType> JointPDFLinearIterator;
  JointPDFLinearIterator linearIter( 
    m_JointPDF, m_JointPDF->GetBufferedRegion() );

  linearIter.SetDirection( 1 );
  linearIter.GoToBegin();
  unsigned int movingIndex = 0;

  while( !linearIter.IsAtEnd() )
    {

    double sum = 0.0;

    while( !linearIter.IsAtEndOfLine() )
      {
      sum += linearIter.Get();
      ++linearIter;
      }

    m_MovingImageMarginalPDF[movingIndex] = static_cast<PDFValueType>(sum);

    linearIter.NextLine();
    ++movingIndex;

    }

  double nFactor = 1.0 / ( m_MovingImageBinSize 
                           * static_cast<double>( nSamples ) );

  if( this->m_UseExplicitPDFDerivatives )
    {
    // Normalize the joint PDF derivatives by the test image binsize and nSamples
    typedef ImageRegionIterator<JointPDFDerivativesType> 
                                                 JointPDFDerivativesIteratorType;
    JointPDFDerivativesIteratorType jointPDFDerivativesIterator (
                                      m_JointPDFDerivatives, 
                                      m_JointPDFDerivatives->GetBufferedRegion() 
                                      );

    jointPDFDerivativesIterator.GoToBegin();
    
    while( !jointPDFDerivativesIterator.IsAtEnd() )
      {
      jointPDFDerivativesIterator.Value() *= nFactor;
      ++jointPDFDerivativesIterator;
      }
    }

  /**
   * Compute the metric by double summation over histogram.
   */

  // Setup pointer to point to the first bin
  JointPDFValueType * jointPDFPtr = m_JointPDF->GetBufferPointer();

  // Initialize sum to zero
  double sum = 0.0;

  for( unsigned int fixedIndex = 0;
       fixedIndex < m_NumberOfHistogramBins;
       ++fixedIndex )
    {
    double fixedImagePDFValue = m_FixedImageMarginalPDF[fixedIndex];

    for( unsigned int movingIndex = 0; movingIndex < m_NumberOfHistogramBins; 
        ++movingIndex, jointPDFPtr++ )      
      {
      double movingImagePDFValue = m_MovingImageMarginalPDF[movingIndex];
      double jointPDFValue = *(jointPDFPtr);

      // check for non-zero bin contribution
      if( jointPDFValue > 1e-16 &&  movingImagePDFValue > 1e-16 )
        {

        double pRatio = vcl_log(jointPDFValue / movingImagePDFValue );

        if( fixedImagePDFValue > 1e-16)
          {
          sum += jointPDFValue * ( pRatio - vcl_log(fixedImagePDFValue ) );
          }

        if( this->m_UseExplicitPDFDerivatives )
          {
          // move joint pdf derivative pointer to the right position
          JointPDFValueType * derivPtr = m_JointPDFDerivatives->GetBufferPointer() 
             + ( fixedIndex  * m_JointPDFDerivatives->GetOffsetTable()[2] ) 
             + ( movingIndex * m_JointPDFDerivatives->GetOffsetTable()[1] );

          for( unsigned int parameter=0; parameter < m_NumberOfParameters; ++parameter, derivPtr++ )
            {
            // Ref: eqn 23 of Thevenaz & Unser paper [3]
            derivative[parameter] -= (*derivPtr) * pRatio;
            }  // end for-loop over parameters
          }
        else
          {
          this->m_PRatioArray[fixedIndex][movingIndex] = pRatio * nFactor;
          }
        }  // end if-block to check non-zero bin contribution
      }  // end for-loop over moving index
    }  // end for-loop over fixed index

  if( !(this->m_UseExplicitPDFDerivatives ) )
    {
    // Second pass: This one is done for accumulating the contributions
    //              to the derivative array.

    nFixedImageSamples = 0;

    for ( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter )
      {

      // Get moving image value
      MovingImagePointType mappedPoint;
      bool sampleOk;
      double movingImageValue;

      this->TransformPoint( nFixedImageSamples, parameters, mappedPoint, 
                            sampleOk, movingImageValue );

      if( sampleOk )
        {
        // Get moving image derivative at the mapped position
        ImageDerivativesType movingImageGradientValue;
        this->ComputeImageDerivatives( mappedPoint, movingImageGradientValue );


        /**
         * Compute this sample's contribution to the marginal 
         *   and joint distributions.
         *
         */

        // Determine parzen window arguments (see eqn 6 of Mattes paper [2]).    
        double movingImageParzenWindowTerm =
          movingImageValue / m_MovingImageBinSize - m_MovingImageNormalizedMin;
        unsigned int movingImageParzenWindowIndex = 
          static_cast<unsigned int>( vcl_floor(movingImageParzenWindowTerm ) );

       // Make sure the extreme values are in valid bins     
        if ( movingImageParzenWindowIndex < 2 )
          {
          movingImageParzenWindowIndex = 2;
          }
        else if ( movingImageParzenWindowIndex > (m_NumberOfHistogramBins - 3) )
          {
          movingImageParzenWindowIndex = m_NumberOfHistogramBins - 3;
          }


        // Move the pointer to the fist affected bin
        int pdfMovingIndex = static_cast<int>( movingImageParzenWindowIndex ) - 1;

        for (; pdfMovingIndex <= static_cast<int>( movingImageParzenWindowIndex )
                                  + 2;
               pdfMovingIndex++ )
          {

          // Update PDF for the current intensity pair
          double movingImageParzenWindowArg = 
            static_cast<double>( pdfMovingIndex ) - 
            static_cast<double>(movingImageParzenWindowTerm);

          // Compute the cubicBSplineDerivative for later repeated use.
          double cubicBSplineDerivativeValue = 
            m_CubicBSplineDerivativeKernel->Evaluate( 
                                                 movingImageParzenWindowArg );

          // Compute PDF derivative contribution.
          this->ComputePDFDerivatives( nFixedImageSamples,
                                       pdfMovingIndex, 
                                       movingImageGradientValue, 
                                       cubicBSplineDerivativeValue );


          }  //end parzen windowing for loop

        } //end if-block check sampleOk

      ++nFixedImageSamples;

      } // end iterating over fixed image spatial sample container for loop

   
    derivative = this->m_MetricDerivative;
    }
  
  value = static_cast<MeasureType>( -1.0 * sum );
}


/**
 * Get the match measure derivative
 */
template < class TFixedImage, class TMovingImage  >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::GetDerivative( const ParametersType& parameters,
                 DerivativeType & derivative ) const
{
  MeasureType value;
  // call the combined version
  this->GetValueAndDerivative( parameters, value, derivative );
}


/**
 * Compute image derivatives using a central difference function
 * if we are not using a BSplineInterpolator, which includes
 * derivatives.
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ComputeImageDerivatives( 
  const MovingImagePointType& mappedPoint, 
  ImageDerivativesType& gradient ) const
{
  
  if( m_InterpolatorIsBSpline )
    {
    // Computed moving image gradient using derivative BSpline kernel.
    gradient = m_BSplineInterpolator->EvaluateDerivative( mappedPoint );
    }
  else
    {
    // For all generic interpolator use central differencing.
   gradient = m_DerivativeCalculator->Evaluate( mappedPoint );
    }

}


/**
 * Transform a point from FixedImage domain to MovingImage domain.
 * This function also checks if mapped point is within support region. 
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::TransformPoint( 
  unsigned int sampleNumber, 
  const ParametersType& parameters,
  MovingImagePointType& mappedPoint,
  bool& sampleOk,
  double& movingImageValue ) const
{

  if ( !m_TransformIsBSpline )
    {
    // Use generic transform to compute mapped position
    mappedPoint = this->m_Transform->TransformPoint( 
      m_FixedImageSamples[sampleNumber].FixedImagePointValue );

    // Check if mapped point inside image buffer
    sampleOk = this->m_Interpolator->IsInsideBuffer( mappedPoint );
    }
  else
    {

    if( this->m_UseCachingOfBSplineWeights )
      {  
      // If the transform is BSplineDeformable, we can use the precomputed
      // weights and indices to obtained the mapped position
      //
      const WeightsValueType * weights = 
                                   m_BSplineTransformWeightsArray[sampleNumber];
      const IndexValueType   * indices = 
                                   m_BSplineTransformIndicesArray[sampleNumber];
      mappedPoint.Fill( 0.0 );

      if ( m_WithinSupportRegionArray[sampleNumber] )
        {
        for ( unsigned int k = 0; k < m_NumBSplineWeights; k++ )
          {
          for ( unsigned int j = 0; j < FixedImageDimension; j++ )
            {
            mappedPoint[j] += weights[k] * 
              parameters[ indices[k] + m_ParametersOffset[j] ];
            }
          }
        }

      for( unsigned int j = 0; j < FixedImageDimension; j++ )
        {
        mappedPoint[j] += m_PreTransformPointsArray[sampleNumber][j];
        }

      // Check if mapped point inside image buffer
      sampleOk = this->m_Interpolator->IsInsideBuffer( mappedPoint );

      // Check if mapped point is within the support region of a grid point.
      // This is neccessary for computing the metric gradient
      sampleOk = sampleOk && m_WithinSupportRegionArray[sampleNumber];
      }
    else
      {
      // If not caching values, we invoke the Transform to recompute the
      // mapping of the point.
      this->m_BSplineTransform->TransformPoint( 
        this->m_FixedImageSamples[sampleNumber].FixedImagePointValue,
        mappedPoint, this->m_Weights, this->m_Indices, sampleOk);

      // Check if mapped point inside image buffer
      sampleOk = sampleOk && this->m_Interpolator->IsInsideBuffer( mappedPoint );
      }

    }

  // If user provided a mask over the Moving image
  if ( this->m_MovingImageMask )
    {
    // Check if mapped point is within the support region of the moving image
    // mask
    sampleOk = sampleOk && this->m_MovingImageMask->IsInside( mappedPoint );
    }


  if ( sampleOk )
    {
    movingImageValue = this->m_Interpolator->Evaluate( mappedPoint );

    if ( movingImageValue < m_MovingImageTrueMin || 
         movingImageValue > m_MovingImageTrueMax )
      {
      // need to throw out this sample as it will not fall into a valid bin
      sampleOk = false;
      }
    }
}


/**
 * Compute PDF derivatives contribution for each parameter
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ComputePDFDerivatives( 
  unsigned int sampleNumber, 
  int pdfMovingIndex,
  const ImageDerivativesType& movingImageGradientValue,
  double cubicBSplineDerivativeValue ) const
{

  const int pdfFixedIndex = 
    m_FixedImageSamples[sampleNumber].FixedImageParzenWindowIndex;

  JointPDFValueType * derivPtr = NULL;
  double precomputedWeight = 0.0;

  if( this->m_UseExplicitPDFDerivatives )
    {
    // Update bins in the PDF derivatives for the current intensity pair
    derivPtr = m_JointPDFDerivatives->GetBufferPointer() +
      ( pdfFixedIndex  * m_JointPDFDerivatives->GetOffsetTable()[2] ) +
      ( pdfMovingIndex * m_JointPDFDerivatives->GetOffsetTable()[1] );
    }
  else
    {
    // Recover the precomputed weight for this specific PDF bin
    precomputedWeight = this->m_PRatioArray[pdfFixedIndex][pdfMovingIndex];
    }

  if( !m_TransformIsBSpline )
    {

    /**
     * Generic version which works for all transforms.
     */

    // Compute the transform Jacobian.
    typedef typename TransformType::JacobianType JacobianType;
    const JacobianType& jacobian = 
      this->m_Transform->GetJacobian( 
        m_FixedImageSamples[sampleNumber].FixedImagePointValue );

    for ( unsigned int mu = 0; mu < m_NumberOfParameters; mu++ )
      {
      double innerProduct = 0.0;
      for ( unsigned int dim = 0; dim < FixedImageDimension; dim++ )
        {
        innerProduct += jacobian[dim][mu] * movingImageGradientValue[dim];
        }

      const double derivativeContribution = innerProduct * cubicBSplineDerivativeValue;

      if( this->m_UseExplicitPDFDerivatives )
        {
        *(derivPtr) -= derivativeContribution;
        ++derivPtr; 
        }
      else
        {
        this->m_MetricDerivative[mu] += precomputedWeight * derivativeContribution;
        }
      }

    }
  else
    {
    const WeightsValueType * weights = NULL;
    const IndexValueType   * indices = NULL;

    if( this->m_UseCachingOfBSplineWeights )
      {
      /**
      * If the transform is of type BSplineDeformableTransform,
      * we can obtain a speed up by only processing the affected parameters.
      * Note that these pointers are just pointing to pre-allocated rows
      * of the caching arrays. There is therefore, no need to free this
      * memory.
      */
      weights = m_BSplineTransformWeightsArray[sampleNumber];
      indices = m_BSplineTransformIndicesArray[sampleNumber];
      }
    else
      {
      m_BSplineTransform->GetJacobian(  
        m_FixedImageSamples[sampleNumber].FixedImagePointValue, m_Weights, m_Indices );
      }

    for( unsigned int dim = 0; dim < FixedImageDimension; dim++ )
      {

      double innerProduct;
      int parameterIndex;

      for( unsigned int mu = 0; mu < m_NumBSplineWeights; mu++ )
        {

        /* The array weights contains the Jacobian values in a 1-D array 
         * (because for each parameter the Jacobian is non-zero in only 1 of the
         * possible dimensions) which is multiplied by the moving image 
         * gradient. */
        if( this->m_UseCachingOfBSplineWeights )
          {
          innerProduct = movingImageGradientValue[dim] * weights[mu];
          parameterIndex = indices[mu] + m_ParametersOffset[dim];
          }
        else
          {
          innerProduct = movingImageGradientValue[dim] * this->m_Weights[mu];
          parameterIndex = this->m_Indices[mu] + this->m_ParametersOffset[dim];
          }

        const double derivativeContribution = innerProduct * cubicBSplineDerivativeValue;

        if( this->m_UseExplicitPDFDerivatives )
          {
          JointPDFValueType * ptr = derivPtr + parameterIndex;
          *(ptr) -= derivativeContribution;
          }
        else
          {
          this->m_MetricDerivative[parameterIndex] += precomputedWeight * derivativeContribution;
          }

        } //end mu for loop
      } //end dim for loop

    } // end if-block transform is BSpline

}


// Method to reinitialize the seed of the random number generator
template < class TFixedImage, class TMovingImage  > void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ReinitializeSeed()
{
  Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed();
}

// Method to reinitialize the seed of the random number generator
template < class TFixedImage, class TMovingImage  > void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ReinitializeSeed(int seed)
{
  Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed(
                                                                         seed);
}


/**
 * Cache pre-transformed points, weights and indices. 
 * This method is only called if the flag UseCachingOfBSplineWeights is ON.
 */
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::PreComputeTransformValues()
{
  // Create all zero dummy transform parameters
  ParametersType dummyParameters( this->m_Transform->GetNumberOfParameters() );
  dummyParameters.Fill( 0.0 );
  this->m_Transform->SetParameters( dummyParameters );

  // Cycle through each sampled fixed image point
  BSplineTransformWeightsType weights( m_NumBSplineWeights );
  BSplineTransformIndexArrayType indices( m_NumBSplineWeights );
  bool valid;
  MovingImagePointType mappedPoint;

  // Declare iterators for iteration over the sample container
  typename FixedImageSpatialSampleContainer::const_iterator fiter;
  typename FixedImageSpatialSampleContainer::const_iterator fend = 
    m_FixedImageSamples.end();
  unsigned long counter = 0;

  for( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter, counter++ )
    {
    m_BSplineTransform->TransformPoint( 
                            m_FixedImageSamples[counter].FixedImagePointValue,
                            mappedPoint, weights, indices, valid );

    for( unsigned long k = 0; k < m_NumBSplineWeights; k++ )
      {
      m_BSplineTransformWeightsArray[counter][k] = weights[k];
      m_BSplineTransformIndicesArray[counter][k] = indices[k];
      }

    m_PreTransformPointsArray[counter]      = mappedPoint;
    m_WithinSupportRegionArray[counter]     = valid;

    }

}


} // end namespace itk


#endif

#endif