1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMattesMutualInformationImageToImageMetric.txx,v $
Language: C++
Date: $Date: 2008-03-27 13:45:10 $
Version: $Revision: 1.58 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkMattesMutualInformationImageToImageMetric_txx
#define _itkMattesMutualInformationImageToImageMetric_txx
// First make sure that the configuration is available.
// This line can be removed once the optimized versions
// gets integrated into the main directories.
#include "itkConfigure.h"
#ifdef ITK_USE_OPTIMIZED_REGISTRATION_METHODS
#include "itkOptMattesMutualInformationImageToImageMetric.txx"
#else
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkCovariantVector.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"
#include "itkImageIterator.h"
#include "vnl/vnl_math.h"
#include "itkBSplineDeformableTransform.h"
namespace itk
{
/**
* Constructor
*/
template < class TFixedImage, class TMovingImage >
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::MattesMutualInformationImageToImageMetric()
{
m_NumberOfSpatialSamples = 500;
m_NumberOfHistogramBins = 50;
this->SetComputeGradient(false); // don't use the default gradient for now
m_InterpolatorIsBSpline = false;
m_TransformIsBSpline = false;
// Initialize PDFs to NULL
m_JointPDF = NULL;
m_JointPDFDerivatives = NULL;
m_UseExplicitPDFDerivatives = true;
typename BSplineTransformType::Pointer transformer =
BSplineTransformType::New();
this->SetTransform (transformer);
typename BSplineInterpolatorType::Pointer interpolator =
BSplineInterpolatorType::New();
this->SetInterpolator (interpolator);
// Initialize memory
m_MovingImageNormalizedMin = 0.0;
m_FixedImageNormalizedMin = 0.0;
m_MovingImageTrueMin = 0.0;
m_MovingImageTrueMax = 0.0;
m_FixedImageBinSize = 0.0;
m_MovingImageBinSize = 0.0;
m_CubicBSplineDerivativeKernel = NULL;
m_BSplineInterpolator = NULL;
m_DerivativeCalculator = NULL;
m_NumParametersPerDim = 0;
m_NumBSplineWeights = 0;
m_BSplineTransform = NULL;
m_NumberOfParameters = 0;
m_UseAllPixels = false;
m_ReseedIterator = false;
m_RandomSeed = -1;
m_UseCachingOfBSplineWeights = true;
}
/**
* Print out internal information about this class
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "NumberOfSpatialSamples: ";
os << m_NumberOfSpatialSamples << std::endl;
os << indent << "NumberOfHistogramBins: ";
os << m_NumberOfHistogramBins << std::endl;
os << indent << "UseAllPixels: ";
os << m_UseAllPixels << std::endl;
// Debugging information
os << indent << "NumberOfParameters: ";
os << m_NumberOfParameters << std::endl;
os << indent << "FixedImageNormalizedMin: ";
os << m_FixedImageNormalizedMin << std::endl;
os << indent << "MovingImageNormalizedMin: ";
os << m_MovingImageNormalizedMin << std::endl;
os << indent << "MovingImageTrueMin: ";
os << m_MovingImageTrueMin << std::endl;
os << indent << "MovingImageTrueMax: ";
os << m_MovingImageTrueMax << std::endl;
os << indent << "FixedImageBinSize: ";
os << m_FixedImageBinSize << std::endl;
os << indent << "MovingImageBinSize: ";
os << m_MovingImageBinSize << std::endl;
os << indent << "InterpolatorIsBSpline: ";
os << m_InterpolatorIsBSpline << std::endl;
os << indent << "TransformIsBSpline: ";
os << m_TransformIsBSpline << std::endl;
os << indent << "UseCachingOfBSplineWeights: ";
os << m_UseCachingOfBSplineWeights << std::endl;
os << indent << "UseExplicitPDFDerivatives: ";
os << m_UseExplicitPDFDerivatives << std::endl;
}
/**
* Initialize
*/
template <class TFixedImage, class TMovingImage>
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::Initialize(void) throw ( ExceptionObject )
{
this->Superclass::Initialize();
// Cache the number of transformation parameters
m_NumberOfParameters = this->m_Transform->GetNumberOfParameters();
/**
* Compute the minimum and maximum for the FixedImage over
* the FixedImageRegion.
*
* NB: We can't use StatisticsImageFilter to do this because
* the filter computes the min/max for the largest possible region
*/
double fixedImageMin = NumericTraits<double>::max();
double fixedImageMax = NumericTraits<double>::NonpositiveMin();
typedef ImageRegionConstIterator<FixedImageType> FixedIteratorType;
FixedIteratorType fixedImageIterator(
this->m_FixedImage, this->GetFixedImageRegion() );
for ( fixedImageIterator.GoToBegin();
!fixedImageIterator.IsAtEnd(); ++fixedImageIterator )
{
double sample = static_cast<double>( fixedImageIterator.Get() );
if ( sample < fixedImageMin )
{
fixedImageMin = sample;
}
if ( sample > fixedImageMax )
{
fixedImageMax = sample;
}
}
/**
* Compute the minimum and maximum for the entire moving image
* in the buffer.
*/
double movingImageMin = NumericTraits<double>::max();
double movingImageMax = NumericTraits<double>::NonpositiveMin();
typedef ImageRegionConstIterator<MovingImageType> MovingIteratorType;
MovingIteratorType movingImageIterator(
this->m_MovingImage, this->m_MovingImage->GetBufferedRegion() );
for ( movingImageIterator.GoToBegin();
!movingImageIterator.IsAtEnd(); ++movingImageIterator)
{
double sample = static_cast<double>( movingImageIterator.Get() );
if ( sample < movingImageMin )
{
movingImageMin = sample;
}
if ( sample > movingImageMax )
{
movingImageMax = sample;
}
}
m_MovingImageTrueMin = movingImageMin;
m_MovingImageTrueMax = movingImageMax;
itkDebugMacro( " FixedImageMin: " << fixedImageMin <<
" FixedImageMax: " << fixedImageMax << std::endl );
itkDebugMacro( " MovingImageMin: " << movingImageMin <<
" MovingImageMax: " << movingImageMax << std::endl );
/**
* Compute binsize for the histograms.
*
* The binsize for the image intensities needs to be adjusted so that
* we can avoid dealing with boundary conditions using the cubic
* spline as the Parzen window. We do this by increasing the size
* of the bins so that the joint histogram becomes "padded" at the
* borders. Because we are changing the binsize,
* we also need to shift the minimum by the padded amount in order to
* avoid minimum values filling in our padded region.
*
* Note that there can still be non-zero bin values in the padded region,
* it's just that these bins will never be a central bin for the Parzen
* window.
*
*/
const int padding = 2; // this will pad by 2 bins
m_FixedImageBinSize = ( fixedImageMax - fixedImageMin ) /
static_cast<double>( m_NumberOfHistogramBins - 2 * padding );
m_FixedImageNormalizedMin = fixedImageMin / m_FixedImageBinSize -
static_cast<double>( padding );
m_MovingImageBinSize = ( movingImageMax - movingImageMin ) /
static_cast<double>( m_NumberOfHistogramBins - 2 * padding );
m_MovingImageNormalizedMin = movingImageMin / m_MovingImageBinSize -
static_cast<double>( padding );
itkDebugMacro( "FixedImageNormalizedMin: " << m_FixedImageNormalizedMin );
itkDebugMacro( "MovingImageNormalizedMin: " << m_MovingImageNormalizedMin );
itkDebugMacro( "FixedImageBinSize: " << m_FixedImageBinSize );
itkDebugMacro( "MovingImageBinSize; " << m_MovingImageBinSize );
if( m_UseAllPixels )
{
m_NumberOfSpatialSamples =
this->GetFixedImageRegion().GetNumberOfPixels();
}
/**
* Allocate memory for the fixed image sample container.
*/
m_FixedImageSamples.resize( m_NumberOfSpatialSamples );
/**
* Allocate memory for the marginal PDF and initialize values
* to zero. The marginal PDFs are stored as std::vector.
*/
m_FixedImageMarginalPDF.resize( m_NumberOfHistogramBins, 0.0 );
m_MovingImageMarginalPDF.resize( m_NumberOfHistogramBins, 0.0 );
/**
* Allocate memory for the joint PDF and joint PDF derivatives.
* The joint PDF and joint PDF derivatives are store as itk::Image.
*/
m_JointPDF = JointPDFType::New();
// Instantiate a region, index, size
JointPDFRegionType jointPDFRegion;
JointPDFIndexType jointPDFIndex;
JointPDFSizeType jointPDFSize;
// Deallocate the memory that may have been allocated for
// previous runs of the metric.
this->m_JointPDFDerivatives = NULL; // by destroying the dynamic array
this->m_PRatioArray.SetSize( 1, 1 ); // and by allocating very small the static ones
this->m_MetricDerivative = DerivativeType( 1 );
//
// Now allocate memory according to the user-selected method.
//
if( this->m_UseExplicitPDFDerivatives )
{
this->m_JointPDFDerivatives = JointPDFDerivativesType::New();
JointPDFDerivativesRegionType jointPDFDerivativesRegion;
JointPDFDerivativesIndexType jointPDFDerivativesIndex;
JointPDFDerivativesSizeType jointPDFDerivativesSize;
// For the derivatives of the joint PDF define a region starting from {0,0,0}
// with size {m_NumberOfParameters,m_NumberOfHistogramBins,
// m_NumberOfHistogramBins}. The dimension represents transform parameters,
// fixed image parzen window index and moving image parzen window index,
// respectively.
jointPDFDerivativesIndex.Fill( 0 );
jointPDFDerivativesSize[0] = m_NumberOfParameters;
jointPDFDerivativesSize[1] = m_NumberOfHistogramBins;
jointPDFDerivativesSize[2] = m_NumberOfHistogramBins;
jointPDFDerivativesRegion.SetIndex( jointPDFDerivativesIndex );
jointPDFDerivativesRegion.SetSize( jointPDFDerivativesSize );
// Set the regions and allocate
m_JointPDFDerivatives->SetRegions( jointPDFDerivativesRegion );
m_JointPDFDerivatives->Allocate();
}
else
{
/** Allocate memory for helper array that will contain the pRatios
* for each bin of the joint histogram. This is part of the effort
* for flattening the computation of the PDF Jacobians.
*/
this->m_PRatioArray.SetSize( this->m_NumberOfHistogramBins, this->m_NumberOfHistogramBins );
this->m_MetricDerivative = DerivativeType( this->GetNumberOfParameters() );
}
// For the joint PDF define a region starting from {0,0}
// with size {m_NumberOfHistogramBins, m_NumberOfHistogramBins}.
// The dimension represents fixed image parzen window index
// and moving image parzen window index, respectively.
jointPDFIndex.Fill( 0 );
jointPDFSize.Fill( m_NumberOfHistogramBins );
jointPDFRegion.SetIndex( jointPDFIndex );
jointPDFRegion.SetSize( jointPDFSize );
// Set the regions and allocate
m_JointPDF->SetRegions( jointPDFRegion );
m_JointPDF->Allocate();
/**
* Setup the kernels used for the Parzen windows.
*/
m_CubicBSplineKernel = CubicBSplineFunctionType::New();
m_CubicBSplineDerivativeKernel = CubicBSplineDerivativeFunctionType::New();
if( m_UseAllPixels )
{
/**
* Take all the pixels within the fixed image region)
* to create the sample points list.
*/
this->SampleFullFixedImageDomain( m_FixedImageSamples );
}
else
{
/**
* Uniformly sample the fixed image (within the fixed image region)
* to create the sample points list.
*/
this->SampleFixedImageDomain( m_FixedImageSamples );
}
/**
* Pre-compute the fixed image parzen window index for
* each point of the fixed image sample points list.
*/
this->ComputeFixedImageParzenWindowIndices( m_FixedImageSamples );
/**
* Check if the interpolator is of type BSplineInterpolateImageFunction.
* If so, we can make use of its EvaluateDerivatives method.
* Otherwise, we instantiate an external central difference
* derivative calculator.
*
* TODO: Also add it the possibility of using the default gradient
* provided by the superclass.
*
*/
m_InterpolatorIsBSpline = true;
BSplineInterpolatorType * testPtr = dynamic_cast<BSplineInterpolatorType *>(
this->m_Interpolator.GetPointer() );
if ( !testPtr )
{
m_InterpolatorIsBSpline = false;
m_DerivativeCalculator = DerivativeFunctionType::New();
#ifdef ITK_USE_ORIENTED_IMAGE_DIRECTION
m_DerivativeCalculator->UseImageDirectionOn();
#endif
m_DerivativeCalculator->SetInputImage( this->m_MovingImage );
m_BSplineInterpolator = NULL;
itkDebugMacro( "Interpolator is not BSpline" );
}
else
{
m_BSplineInterpolator = testPtr;
#ifdef ITK_USE_ORIENTED_IMAGE_DIRECTION
m_BSplineInterpolator->UseImageDirectionOn();
#endif
m_DerivativeCalculator = NULL;
itkDebugMacro( "Interpolator is BSpline" );
}
/**
* Check if the transform is of type BSplineDeformableTransform.
*
* If so, several speed up features are implemented.
* [1] Precomputing the results of bulk transform for each sample point.
* [2] Precomputing the BSpline weights for each sample point,
* to be used later to directly compute the deformation vector
* [3] Precomputing the indices of the parameters within the
* the support region of each sample point.
*/
m_TransformIsBSpline = true;
BSplineTransformType * testPtr2 = dynamic_cast<BSplineTransformType *>(
this->m_Transform.GetPointer() );
if( !testPtr2 )
{
m_TransformIsBSpline = false;
m_BSplineTransform = NULL;
itkDebugMacro( "Transform is not BSplineDeformable" );
}
else
{
m_BSplineTransform = testPtr2;
m_NumParametersPerDim =
m_BSplineTransform->GetNumberOfParametersPerDimension();
m_NumBSplineWeights = m_BSplineTransform->GetNumberOfWeights();
itkDebugMacro( "Transform is BSplineDeformable" );
}
if( this->m_TransformIsBSpline )
{
// First, deallocate memory that may have been used from previous run of the Metric
this->m_BSplineTransformWeightsArray.SetSize( 1, 1 );
this->m_BSplineTransformIndicesArray.SetSize( 1, 1 );
this->m_PreTransformPointsArray.resize( 1 );
this->m_WithinSupportRegionArray.resize( 1 );
this->m_Weights.SetSize( 1 );
this->m_Indices.SetSize( 1 );
if( this->m_UseCachingOfBSplineWeights )
{
m_BSplineTransformWeightsArray.SetSize(
m_NumberOfSpatialSamples, m_NumBSplineWeights );
m_BSplineTransformIndicesArray.SetSize(
m_NumberOfSpatialSamples, m_NumBSplineWeights );
m_PreTransformPointsArray.resize( m_NumberOfSpatialSamples );
m_WithinSupportRegionArray.resize( m_NumberOfSpatialSamples );
this->PreComputeTransformValues();
}
else
{
this->m_Weights.SetSize( this->m_NumBSplineWeights );
this->m_Indices.SetSize( this->m_NumBSplineWeights );
}
for ( unsigned int j = 0; j < FixedImageDimension; j++ )
{
m_ParametersOffset[j] = j *
m_BSplineTransform->GetNumberOfParametersPerDimension();
}
}
}
/**
* Uniformly sample the fixed image domain using a random walk
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::SampleFixedImageDomain( FixedImageSpatialSampleContainer& samples )
{
// Set up a random interator within the user specified fixed image region.
typedef ImageRandomConstIteratorWithIndex<FixedImageType> RandomIterator;
RandomIterator randIter( this->m_FixedImage, this->GetFixedImageRegion() );
randIter.SetNumberOfSamples( m_NumberOfSpatialSamples );
randIter.GoToBegin();
typename FixedImageSpatialSampleContainer::iterator iter;
typename FixedImageSpatialSampleContainer::const_iterator end=samples.end();
if( this->m_FixedImageMask )
{
InputPointType inputPoint;
iter=samples.begin();
int count = 0;
int samples_found = 0;
int maxcount = m_NumberOfSpatialSamples * 10;
while( iter != end )
{
if ( count > maxcount )
{
#if 0
itkExceptionMacro(
"Drew too many samples from the mask (is it too small?): "
<< maxcount << std::endl );
#else
samples.resize(samples_found);
// this->SetNumberOfSpatialSamples(sample_found);
break;
#endif
}
count++;
// Get sampled index
FixedImageIndexType index = randIter.GetIndex();
// Check if the Index is inside the mask, translate index to point
this->m_FixedImage->TransformIndexToPhysicalPoint( index, inputPoint );
// If not inside the mask, ignore the point
if( !this->m_FixedImageMask->IsInside( inputPoint ) )
{
++randIter; // jump to another random position
continue;
}
// Get sampled fixed image value
(*iter).FixedImageValue = randIter.Get();
// Translate index to point
(*iter).FixedImagePointValue = inputPoint;
samples_found++;
// Jump to random position
++randIter;
++iter;
}
}
else
{
for( iter=samples.begin(); iter != end; ++iter )
{
// Get sampled index
FixedImageIndexType index = randIter.GetIndex();
// Get sampled fixed image value
(*iter).FixedImageValue = randIter.Get();
// Translate index to point
this->m_FixedImage->TransformIndexToPhysicalPoint( index,
(*iter).FixedImagePointValue );
// Jump to random position
++randIter;
}
}
}
/**
* Sample the fixed image domain using all pixels in the Fixed image region
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::SampleFullFixedImageDomain( FixedImageSpatialSampleContainer& samples )
{
// Set up a region interator within the user specified fixed image region.
typedef ImageRegionConstIteratorWithIndex<FixedImageType> RegionIterator;
RegionIterator regionIter( this->m_FixedImage, this->GetFixedImageRegion() );
regionIter.GoToBegin();
typename FixedImageSpatialSampleContainer::iterator iter;
typename FixedImageSpatialSampleContainer::const_iterator end=samples.end();
if( this->m_FixedImageMask )
{
InputPointType inputPoint;
iter=samples.begin();
unsigned long nSamplesPicked = 0;
while( iter != end && !regionIter.IsAtEnd() )
{
// Get sampled index
FixedImageIndexType index = regionIter.GetIndex();
// Check if the Index is inside the mask, translate index to point
this->m_FixedImage->TransformIndexToPhysicalPoint( index, inputPoint );
// If not inside the mask, ignore the point
if( !this->m_FixedImageMask->IsInside( inputPoint ) )
{
++regionIter; // jump to next pixel
continue;
}
// Get sampled fixed image value
(*iter).FixedImageValue = regionIter.Get();
// Translate index to point
(*iter).FixedImagePointValue = inputPoint;
++regionIter;
++iter;
++nSamplesPicked;
}
// If we picked fewer samples than the desired number,
// resize the container
if (nSamplesPicked != this->m_NumberOfSpatialSamples)
{
this->m_NumberOfSpatialSamples = nSamplesPicked;
samples.resize(this->m_NumberOfSpatialSamples);
}
}
else // not restricting sample throwing to a mask
{
// cannot sample more than the number of pixels in the image region
if ( this->m_NumberOfSpatialSamples
> this->GetFixedImageRegion().GetNumberOfPixels())
{
this->m_NumberOfSpatialSamples
= this->GetFixedImageRegion().GetNumberOfPixels();
samples.resize(this->m_NumberOfSpatialSamples);
}
for( iter=samples.begin(); iter != end; ++iter )
{
// Get sampled index
FixedImageIndexType index = regionIter.GetIndex();
// Get sampled fixed image value
(*iter).FixedImageValue = regionIter.Get();
// Translate index to point
this->m_FixedImage->TransformIndexToPhysicalPoint( index,
(*iter).FixedImagePointValue );
++regionIter;
}
}
}
/**
* Uniformly sample the fixed image domain using a random walk
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ComputeFixedImageParzenWindowIndices(
FixedImageSpatialSampleContainer& samples )
{
typename FixedImageSpatialSampleContainer::iterator iter;
typename FixedImageSpatialSampleContainer::const_iterator end=samples.end();
for( iter=samples.begin(); iter != end; ++iter )
{
// Determine parzen window arguments (see eqn 6 of Mattes paper [2]).
double windowTerm =
static_cast<double>( (*iter).FixedImageValue ) / m_FixedImageBinSize -
m_FixedImageNormalizedMin;
unsigned int pindex = static_cast<unsigned int>( vcl_floor(windowTerm ) );
// Make sure the extreme values are in valid bins
if ( pindex < 2 )
{
pindex = 2;
}
else if ( pindex > (m_NumberOfHistogramBins - 3) )
{
pindex = m_NumberOfHistogramBins - 3;
}
(*iter).FixedImageParzenWindowIndex = pindex;
}
}
/**
* Get the match Measure
*/
template < class TFixedImage, class TMovingImage >
typename MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::MeasureType
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::GetValue( const ParametersType& parameters ) const
{
// Reset marginal pdf to all zeros.
// Assumed the size has already been set to NumberOfHistogramBins
// in Initialize().
for ( unsigned int j = 0; j < m_NumberOfHistogramBins; j++ )
{
m_FixedImageMarginalPDF[j] = 0.0;
m_MovingImageMarginalPDF[j] = 0.0;
}
// Reset the joint pdfs to zero
m_JointPDF->FillBuffer( 0.0 );
// Set up the parameters in the transform
this->m_Transform->SetParameters( parameters );
// Declare iterators for iteration over the sample container
typename FixedImageSpatialSampleContainer::const_iterator fiter;
typename FixedImageSpatialSampleContainer::const_iterator fend =
m_FixedImageSamples.end();
unsigned long nSamples=0;
unsigned long nFixedImageSamples=0;
for ( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter )
{
// Get moving image value
MovingImagePointType mappedPoint;
bool sampleOk;
double movingImageValue;
this->TransformPoint( nFixedImageSamples, parameters, mappedPoint,
sampleOk, movingImageValue );
++nFixedImageSamples;
if( sampleOk )
{
++nSamples;
/**
* Compute this sample's contribution to the marginal and
* joint distributions.
*
*/
// Determine parzen window arguments (see eqn 6 of Mattes paper [2]).
double movingImageParzenWindowTerm =
movingImageValue / m_MovingImageBinSize - m_MovingImageNormalizedMin;
unsigned int movingImageParzenWindowIndex =
static_cast<unsigned int>( vcl_floor(movingImageParzenWindowTerm ) );
// Make sure the extreme values are in valid bins
if ( movingImageParzenWindowIndex < 2 )
{
movingImageParzenWindowIndex = 2;
}
else if ( movingImageParzenWindowIndex > (m_NumberOfHistogramBins - 3) )
{
movingImageParzenWindowIndex = m_NumberOfHistogramBins - 3;
}
// Since a zero-order BSpline (box car) kernel is used for
// the fixed image marginal pdf, we need only increment the
// fixedImageParzenWindowIndex by value of 1.0.
m_FixedImageMarginalPDF[(*fiter).FixedImageParzenWindowIndex] +=
static_cast<PDFValueType>( 1 );
/**
* The region of support of the parzen window determines which bins
* of the joint PDF are effected by the pair of image values.
* Since we are using a cubic spline for the moving image parzen
* window, four bins are affected. The fixed image parzen window is
* a zero-order spline (box car) and thus effects only one bin.
*
* The PDF is arranged so that moving image bins corresponds to the
* zero-th (column) dimension and the fixed image bins corresponds
* to the first (row) dimension.
*
*/
// Pointer to affected bin to be updated
JointPDFValueType *pdfPtr = m_JointPDF->GetBufferPointer() +
( (*fiter).FixedImageParzenWindowIndex
* m_JointPDF->GetOffsetTable()[1] );
// Move the pointer to the first affected bin
int pdfMovingIndex = static_cast<int>( movingImageParzenWindowIndex ) - 1;
pdfPtr += pdfMovingIndex;
for (; pdfMovingIndex <= static_cast<int>( movingImageParzenWindowIndex )
+ 2;
pdfMovingIndex++, pdfPtr++ )
{
// Update PDF for the current intensity pair
double movingImageParzenWindowArg =
static_cast<double>( pdfMovingIndex ) -
static_cast<double>( movingImageParzenWindowTerm );
*(pdfPtr) += static_cast<PDFValueType>(
m_CubicBSplineKernel->Evaluate( movingImageParzenWindowArg ) );
} //end parzen windowing for loop
} //end if-block check sampleOk
} // end iterating over fixed image spatial sample container for loop
itkDebugMacro( "Ratio of voxels mapping into moving image buffer: "
<< nSamples << " / " << m_NumberOfSpatialSamples
<< std::endl );
if( nSamples < m_NumberOfSpatialSamples / 4 )
{
itkExceptionMacro( "Too many samples map outside moving image buffer: "
<< nSamples << " / " << m_NumberOfSpatialSamples
<< std::endl );
}
/**
* Normalize the PDFs, compute moving image marginal PDF
*
*/
typedef ImageRegionIterator<JointPDFType> JointPDFIteratorType;
JointPDFIteratorType jointPDFIterator ( m_JointPDF,
m_JointPDF->GetBufferedRegion() );
jointPDFIterator.GoToBegin();
// Compute joint PDF normalization factor
// (to ensure joint PDF sum adds to 1.0)
double jointPDFSum = 0.0;
while( !jointPDFIterator.IsAtEnd() )
{
jointPDFSum += jointPDFIterator.Get();
++jointPDFIterator;
}
if ( jointPDFSum == 0.0 )
{
itkExceptionMacro( "Joint PDF summed to zero" );
}
// Normalize the PDF bins
jointPDFIterator.GoToEnd();
while( !jointPDFIterator.IsAtBegin() )
{
--jointPDFIterator;
jointPDFIterator.Value() /= static_cast<PDFValueType>( jointPDFSum );
}
// Normalize the fixed image marginal PDF
double fixedPDFSum = 0.0;
for( unsigned int bin = 0; bin < m_NumberOfHistogramBins; bin++ )
{
fixedPDFSum += m_FixedImageMarginalPDF[bin];
}
if ( fixedPDFSum == 0.0 )
{
itkExceptionMacro( "Fixed image marginal PDF summed to zero" );
}
for( unsigned int bin=0; bin < m_NumberOfHistogramBins; bin++ )
{
m_FixedImageMarginalPDF[bin] /= static_cast<PDFValueType>( fixedPDFSum );
}
// Compute moving image marginal PDF by summing over fixed image bins.
typedef ImageLinearIteratorWithIndex<JointPDFType> JointPDFLinearIterator;
JointPDFLinearIterator linearIter( m_JointPDF,
m_JointPDF->GetBufferedRegion() );
linearIter.SetDirection( 1 );
linearIter.GoToBegin();
unsigned int movingIndex = 0;
while( !linearIter.IsAtEnd() )
{
double sum = 0.0;
while( !linearIter.IsAtEndOfLine() )
{
sum += linearIter.Get();
++linearIter;
}
m_MovingImageMarginalPDF[movingIndex] = static_cast<PDFValueType>(sum);
linearIter.NextLine();
++movingIndex;
}
/**
* Compute the metric by double summation over histogram.
*/
// Setup pointer to point to the first bin
JointPDFValueType * jointPDFPtr = m_JointPDF->GetBufferPointer();
// Initialze sum to zero
double sum = 0.0;
for( unsigned int fixedIndex = 0;
fixedIndex < m_NumberOfHistogramBins;
++fixedIndex )
{
double fixedImagePDFValue = m_FixedImageMarginalPDF[fixedIndex];
for( unsigned int movingIndex = 0;
movingIndex < m_NumberOfHistogramBins;
++movingIndex, jointPDFPtr++ )
{
double movingImagePDFValue = m_MovingImageMarginalPDF[movingIndex];
double jointPDFValue = *(jointPDFPtr);
// check for non-zero bin contribution
if( jointPDFValue > 1e-16 && movingImagePDFValue > 1e-16 )
{
double pRatio = vcl_log(jointPDFValue / movingImagePDFValue );
if( fixedImagePDFValue > 1e-16)
{
sum += jointPDFValue * ( pRatio - vcl_log(fixedImagePDFValue ) );
}
} // end if-block to check non-zero bin contribution
} // end for-loop over moving index
} // end for-loop over fixed index
return static_cast<MeasureType>( -1.0 * sum );
}
/**
* Get the both Value and Derivative Measure
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::GetValueAndDerivative(
const ParametersType& parameters,
MeasureType& value,
DerivativeType& derivative) const
{
// Set output values to zero
value = NumericTraits< MeasureType >::Zero;
if( this->m_UseExplicitPDFDerivatives )
{
m_JointPDFDerivatives->FillBuffer( 0.0 );
derivative = DerivativeType( this->GetNumberOfParameters() );
derivative.Fill( NumericTraits< MeasureType >::Zero );
}
else
{
this->m_MetricDerivative.Fill( NumericTraits< MeasureType >::Zero );
this->m_PRatioArray.Fill( 0.0 );
}
// Reset marginal pdf to all zeros.
// Assumed the size has already been set to NumberOfHistogramBins
// in Initialize().
for ( unsigned int j = 0; j < m_NumberOfHistogramBins; j++ )
{
m_FixedImageMarginalPDF[j] = 0.0;
m_MovingImageMarginalPDF[j] = 0.0;
}
// Reset the joint pdfs to zero
m_JointPDF->FillBuffer( 0.0 );
// Set up the parameters in the transform
this->m_Transform->SetParameters( parameters );
// Declare iterators for iteration over the sample container
typename FixedImageSpatialSampleContainer::const_iterator fiter;
typename FixedImageSpatialSampleContainer::const_iterator fend =
m_FixedImageSamples.end();
unsigned long nSamples=0;
unsigned long nFixedImageSamples=0;
for ( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter )
{
// Get moving image value
MovingImagePointType mappedPoint;
bool sampleOk;
double movingImageValue;
this->TransformPoint( nFixedImageSamples, parameters, mappedPoint,
sampleOk, movingImageValue );
if( sampleOk )
{
++nSamples;
// Get moving image derivative at the mapped position
ImageDerivativesType movingImageGradientValue;
this->ComputeImageDerivatives( mappedPoint, movingImageGradientValue );
/**
* Compute this sample's contribution to the marginal
* and joint distributions.
*
*/
// Determine parzen window arguments (see eqn 6 of Mattes paper [2]).
double movingImageParzenWindowTerm =
movingImageValue / m_MovingImageBinSize - m_MovingImageNormalizedMin;
unsigned int movingImageParzenWindowIndex =
static_cast<unsigned int>( vcl_floor(movingImageParzenWindowTerm ) );
// Make sure the extreme values are in valid bins
if ( movingImageParzenWindowIndex < 2 )
{
movingImageParzenWindowIndex = 2;
}
else if ( movingImageParzenWindowIndex > (m_NumberOfHistogramBins - 3) )
{
movingImageParzenWindowIndex = m_NumberOfHistogramBins - 3;
}
// Since a zero-order BSpline (box car) kernel is used for
// the fixed image marginal pdf, we need only increment the
// fixedImageParzenWindowIndex by value of 1.0.
m_FixedImageMarginalPDF[(*fiter).FixedImageParzenWindowIndex] +=
static_cast<PDFValueType>( 1 );
/**
* The region of support of the parzen window determines which bins
* of the joint PDF are effected by the pair of image values.
* Since we are using a cubic spline for the moving image parzen
* window, four bins are effected. The fixed image parzen window is
* a zero-order spline (box car) and thus effects only one bin.
*
* The PDF is arranged so that moving image bins corresponds to the
* zero-th (column) dimension and the fixed image bins corresponds
* to the first (row) dimension.
*
*/
// Pointer to affected bin to be updated
JointPDFValueType *pdfPtr = m_JointPDF->GetBufferPointer() +
( (*fiter).FixedImageParzenWindowIndex * m_NumberOfHistogramBins );
// Move the pointer to the fist affected bin
int pdfMovingIndex = static_cast<int>( movingImageParzenWindowIndex ) - 1;
pdfPtr += pdfMovingIndex;
for (; pdfMovingIndex <= static_cast<int>( movingImageParzenWindowIndex )
+ 2;
pdfMovingIndex++, pdfPtr++ )
{
// Update PDF for the current intensity pair
double movingImageParzenWindowArg =
static_cast<double>( pdfMovingIndex ) -
static_cast<double>(movingImageParzenWindowTerm);
*(pdfPtr) += static_cast<PDFValueType>(
m_CubicBSplineKernel->Evaluate( movingImageParzenWindowArg ) );
if( this->m_UseExplicitPDFDerivatives )
{
// Compute the cubicBSplineDerivative for later repeated use.
double cubicBSplineDerivativeValue =
m_CubicBSplineDerivativeKernel->Evaluate(
movingImageParzenWindowArg );
// Compute PDF derivative contribution.
this->ComputePDFDerivatives( nFixedImageSamples,
pdfMovingIndex,
movingImageGradientValue,
cubicBSplineDerivativeValue );
}
} //end parzen windowing for loop
} //end if-block check sampleOk
++nFixedImageSamples;
} // end iterating over fixed image spatial sample container for loop
itkDebugMacro( "Ratio of voxels mapping into moving image buffer: "
<< nSamples << " / " << m_NumberOfSpatialSamples
<< std::endl );
if( nSamples < m_NumberOfSpatialSamples / 4 )
{
itkExceptionMacro( "Too many samples map outside moving image buffer: "
<< nSamples << " / " << m_NumberOfSpatialSamples
<< std::endl );
}
this->m_NumberOfPixelsCounted = nSamples;
/**
* Normalize the PDFs, compute moving image marginal PDF
*
*/
typedef ImageRegionIterator<JointPDFType> JointPDFIteratorType;
JointPDFIteratorType jointPDFIterator ( m_JointPDF,
m_JointPDF->GetBufferedRegion() );
jointPDFIterator.GoToBegin();
// Compute joint PDF normalization factor
// (to ensure joint PDF sum adds to 1.0)
double jointPDFSum = 0.0;
while( !jointPDFIterator.IsAtEnd() )
{
jointPDFSum += jointPDFIterator.Get();
++jointPDFIterator;
}
if ( jointPDFSum == 0.0 )
{
itkExceptionMacro( "Joint PDF summed to zero" );
}
// Normalize the PDF bins
jointPDFIterator.GoToEnd();
while( !jointPDFIterator.IsAtBegin() )
{
--jointPDFIterator;
jointPDFIterator.Value() /= static_cast<PDFValueType>( jointPDFSum );
}
// Normalize the fixed image marginal PDF
double fixedPDFSum = 0.0;
for( unsigned int bin = 0; bin < m_NumberOfHistogramBins; bin++ )
{
fixedPDFSum += m_FixedImageMarginalPDF[bin];
}
if ( fixedPDFSum == 0.0 )
{
itkExceptionMacro( "Fixed image marginal PDF summed to zero" );
}
for( unsigned int bin=0; bin < m_NumberOfHistogramBins; bin++ )
{
m_FixedImageMarginalPDF[bin] /= static_cast<PDFValueType>( fixedPDFSum );
}
// Compute moving image marginal PDF by summing over fixed image bins.
typedef ImageLinearIteratorWithIndex<JointPDFType> JointPDFLinearIterator;
JointPDFLinearIterator linearIter(
m_JointPDF, m_JointPDF->GetBufferedRegion() );
linearIter.SetDirection( 1 );
linearIter.GoToBegin();
unsigned int movingIndex = 0;
while( !linearIter.IsAtEnd() )
{
double sum = 0.0;
while( !linearIter.IsAtEndOfLine() )
{
sum += linearIter.Get();
++linearIter;
}
m_MovingImageMarginalPDF[movingIndex] = static_cast<PDFValueType>(sum);
linearIter.NextLine();
++movingIndex;
}
double nFactor = 1.0 / ( m_MovingImageBinSize
* static_cast<double>( nSamples ) );
if( this->m_UseExplicitPDFDerivatives )
{
// Normalize the joint PDF derivatives by the test image binsize and nSamples
typedef ImageRegionIterator<JointPDFDerivativesType>
JointPDFDerivativesIteratorType;
JointPDFDerivativesIteratorType jointPDFDerivativesIterator (
m_JointPDFDerivatives,
m_JointPDFDerivatives->GetBufferedRegion()
);
jointPDFDerivativesIterator.GoToBegin();
while( !jointPDFDerivativesIterator.IsAtEnd() )
{
jointPDFDerivativesIterator.Value() *= nFactor;
++jointPDFDerivativesIterator;
}
}
/**
* Compute the metric by double summation over histogram.
*/
// Setup pointer to point to the first bin
JointPDFValueType * jointPDFPtr = m_JointPDF->GetBufferPointer();
// Initialize sum to zero
double sum = 0.0;
for( unsigned int fixedIndex = 0;
fixedIndex < m_NumberOfHistogramBins;
++fixedIndex )
{
double fixedImagePDFValue = m_FixedImageMarginalPDF[fixedIndex];
for( unsigned int movingIndex = 0; movingIndex < m_NumberOfHistogramBins;
++movingIndex, jointPDFPtr++ )
{
double movingImagePDFValue = m_MovingImageMarginalPDF[movingIndex];
double jointPDFValue = *(jointPDFPtr);
// check for non-zero bin contribution
if( jointPDFValue > 1e-16 && movingImagePDFValue > 1e-16 )
{
double pRatio = vcl_log(jointPDFValue / movingImagePDFValue );
if( fixedImagePDFValue > 1e-16)
{
sum += jointPDFValue * ( pRatio - vcl_log(fixedImagePDFValue ) );
}
if( this->m_UseExplicitPDFDerivatives )
{
// move joint pdf derivative pointer to the right position
JointPDFValueType * derivPtr = m_JointPDFDerivatives->GetBufferPointer()
+ ( fixedIndex * m_JointPDFDerivatives->GetOffsetTable()[2] )
+ ( movingIndex * m_JointPDFDerivatives->GetOffsetTable()[1] );
for( unsigned int parameter=0; parameter < m_NumberOfParameters; ++parameter, derivPtr++ )
{
// Ref: eqn 23 of Thevenaz & Unser paper [3]
derivative[parameter] -= (*derivPtr) * pRatio;
} // end for-loop over parameters
}
else
{
this->m_PRatioArray[fixedIndex][movingIndex] = pRatio * nFactor;
}
} // end if-block to check non-zero bin contribution
} // end for-loop over moving index
} // end for-loop over fixed index
if( !(this->m_UseExplicitPDFDerivatives ) )
{
// Second pass: This one is done for accumulating the contributions
// to the derivative array.
nFixedImageSamples = 0;
for ( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter )
{
// Get moving image value
MovingImagePointType mappedPoint;
bool sampleOk;
double movingImageValue;
this->TransformPoint( nFixedImageSamples, parameters, mappedPoint,
sampleOk, movingImageValue );
if( sampleOk )
{
// Get moving image derivative at the mapped position
ImageDerivativesType movingImageGradientValue;
this->ComputeImageDerivatives( mappedPoint, movingImageGradientValue );
/**
* Compute this sample's contribution to the marginal
* and joint distributions.
*
*/
// Determine parzen window arguments (see eqn 6 of Mattes paper [2]).
double movingImageParzenWindowTerm =
movingImageValue / m_MovingImageBinSize - m_MovingImageNormalizedMin;
unsigned int movingImageParzenWindowIndex =
static_cast<unsigned int>( vcl_floor(movingImageParzenWindowTerm ) );
// Make sure the extreme values are in valid bins
if ( movingImageParzenWindowIndex < 2 )
{
movingImageParzenWindowIndex = 2;
}
else if ( movingImageParzenWindowIndex > (m_NumberOfHistogramBins - 3) )
{
movingImageParzenWindowIndex = m_NumberOfHistogramBins - 3;
}
// Move the pointer to the fist affected bin
int pdfMovingIndex = static_cast<int>( movingImageParzenWindowIndex ) - 1;
for (; pdfMovingIndex <= static_cast<int>( movingImageParzenWindowIndex )
+ 2;
pdfMovingIndex++ )
{
// Update PDF for the current intensity pair
double movingImageParzenWindowArg =
static_cast<double>( pdfMovingIndex ) -
static_cast<double>(movingImageParzenWindowTerm);
// Compute the cubicBSplineDerivative for later repeated use.
double cubicBSplineDerivativeValue =
m_CubicBSplineDerivativeKernel->Evaluate(
movingImageParzenWindowArg );
// Compute PDF derivative contribution.
this->ComputePDFDerivatives( nFixedImageSamples,
pdfMovingIndex,
movingImageGradientValue,
cubicBSplineDerivativeValue );
} //end parzen windowing for loop
} //end if-block check sampleOk
++nFixedImageSamples;
} // end iterating over fixed image spatial sample container for loop
derivative = this->m_MetricDerivative;
}
value = static_cast<MeasureType>( -1.0 * sum );
}
/**
* Get the match measure derivative
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::GetDerivative( const ParametersType& parameters,
DerivativeType & derivative ) const
{
MeasureType value;
// call the combined version
this->GetValueAndDerivative( parameters, value, derivative );
}
/**
* Compute image derivatives using a central difference function
* if we are not using a BSplineInterpolator, which includes
* derivatives.
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ComputeImageDerivatives(
const MovingImagePointType& mappedPoint,
ImageDerivativesType& gradient ) const
{
if( m_InterpolatorIsBSpline )
{
// Computed moving image gradient using derivative BSpline kernel.
gradient = m_BSplineInterpolator->EvaluateDerivative( mappedPoint );
}
else
{
// For all generic interpolator use central differencing.
gradient = m_DerivativeCalculator->Evaluate( mappedPoint );
}
}
/**
* Transform a point from FixedImage domain to MovingImage domain.
* This function also checks if mapped point is within support region.
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::TransformPoint(
unsigned int sampleNumber,
const ParametersType& parameters,
MovingImagePointType& mappedPoint,
bool& sampleOk,
double& movingImageValue ) const
{
if ( !m_TransformIsBSpline )
{
// Use generic transform to compute mapped position
mappedPoint = this->m_Transform->TransformPoint(
m_FixedImageSamples[sampleNumber].FixedImagePointValue );
// Check if mapped point inside image buffer
sampleOk = this->m_Interpolator->IsInsideBuffer( mappedPoint );
}
else
{
if( this->m_UseCachingOfBSplineWeights )
{
// If the transform is BSplineDeformable, we can use the precomputed
// weights and indices to obtained the mapped position
//
const WeightsValueType * weights =
m_BSplineTransformWeightsArray[sampleNumber];
const IndexValueType * indices =
m_BSplineTransformIndicesArray[sampleNumber];
mappedPoint.Fill( 0.0 );
if ( m_WithinSupportRegionArray[sampleNumber] )
{
for ( unsigned int k = 0; k < m_NumBSplineWeights; k++ )
{
for ( unsigned int j = 0; j < FixedImageDimension; j++ )
{
mappedPoint[j] += weights[k] *
parameters[ indices[k] + m_ParametersOffset[j] ];
}
}
}
for( unsigned int j = 0; j < FixedImageDimension; j++ )
{
mappedPoint[j] += m_PreTransformPointsArray[sampleNumber][j];
}
// Check if mapped point inside image buffer
sampleOk = this->m_Interpolator->IsInsideBuffer( mappedPoint );
// Check if mapped point is within the support region of a grid point.
// This is neccessary for computing the metric gradient
sampleOk = sampleOk && m_WithinSupportRegionArray[sampleNumber];
}
else
{
// If not caching values, we invoke the Transform to recompute the
// mapping of the point.
this->m_BSplineTransform->TransformPoint(
this->m_FixedImageSamples[sampleNumber].FixedImagePointValue,
mappedPoint, this->m_Weights, this->m_Indices, sampleOk);
// Check if mapped point inside image buffer
sampleOk = sampleOk && this->m_Interpolator->IsInsideBuffer( mappedPoint );
}
}
// If user provided a mask over the Moving image
if ( this->m_MovingImageMask )
{
// Check if mapped point is within the support region of the moving image
// mask
sampleOk = sampleOk && this->m_MovingImageMask->IsInside( mappedPoint );
}
if ( sampleOk )
{
movingImageValue = this->m_Interpolator->Evaluate( mappedPoint );
if ( movingImageValue < m_MovingImageTrueMin ||
movingImageValue > m_MovingImageTrueMax )
{
// need to throw out this sample as it will not fall into a valid bin
sampleOk = false;
}
}
}
/**
* Compute PDF derivatives contribution for each parameter
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ComputePDFDerivatives(
unsigned int sampleNumber,
int pdfMovingIndex,
const ImageDerivativesType& movingImageGradientValue,
double cubicBSplineDerivativeValue ) const
{
const int pdfFixedIndex =
m_FixedImageSamples[sampleNumber].FixedImageParzenWindowIndex;
JointPDFValueType * derivPtr = NULL;
double precomputedWeight = 0.0;
if( this->m_UseExplicitPDFDerivatives )
{
// Update bins in the PDF derivatives for the current intensity pair
derivPtr = m_JointPDFDerivatives->GetBufferPointer() +
( pdfFixedIndex * m_JointPDFDerivatives->GetOffsetTable()[2] ) +
( pdfMovingIndex * m_JointPDFDerivatives->GetOffsetTable()[1] );
}
else
{
// Recover the precomputed weight for this specific PDF bin
precomputedWeight = this->m_PRatioArray[pdfFixedIndex][pdfMovingIndex];
}
if( !m_TransformIsBSpline )
{
/**
* Generic version which works for all transforms.
*/
// Compute the transform Jacobian.
typedef typename TransformType::JacobianType JacobianType;
const JacobianType& jacobian =
this->m_Transform->GetJacobian(
m_FixedImageSamples[sampleNumber].FixedImagePointValue );
for ( unsigned int mu = 0; mu < m_NumberOfParameters; mu++ )
{
double innerProduct = 0.0;
for ( unsigned int dim = 0; dim < FixedImageDimension; dim++ )
{
innerProduct += jacobian[dim][mu] * movingImageGradientValue[dim];
}
const double derivativeContribution = innerProduct * cubicBSplineDerivativeValue;
if( this->m_UseExplicitPDFDerivatives )
{
*(derivPtr) -= derivativeContribution;
++derivPtr;
}
else
{
this->m_MetricDerivative[mu] += precomputedWeight * derivativeContribution;
}
}
}
else
{
const WeightsValueType * weights = NULL;
const IndexValueType * indices = NULL;
if( this->m_UseCachingOfBSplineWeights )
{
/**
* If the transform is of type BSplineDeformableTransform,
* we can obtain a speed up by only processing the affected parameters.
* Note that these pointers are just pointing to pre-allocated rows
* of the caching arrays. There is therefore, no need to free this
* memory.
*/
weights = m_BSplineTransformWeightsArray[sampleNumber];
indices = m_BSplineTransformIndicesArray[sampleNumber];
}
else
{
m_BSplineTransform->GetJacobian(
m_FixedImageSamples[sampleNumber].FixedImagePointValue, m_Weights, m_Indices );
}
for( unsigned int dim = 0; dim < FixedImageDimension; dim++ )
{
double innerProduct;
int parameterIndex;
for( unsigned int mu = 0; mu < m_NumBSplineWeights; mu++ )
{
/* The array weights contains the Jacobian values in a 1-D array
* (because for each parameter the Jacobian is non-zero in only 1 of the
* possible dimensions) which is multiplied by the moving image
* gradient. */
if( this->m_UseCachingOfBSplineWeights )
{
innerProduct = movingImageGradientValue[dim] * weights[mu];
parameterIndex = indices[mu] + m_ParametersOffset[dim];
}
else
{
innerProduct = movingImageGradientValue[dim] * this->m_Weights[mu];
parameterIndex = this->m_Indices[mu] + this->m_ParametersOffset[dim];
}
const double derivativeContribution = innerProduct * cubicBSplineDerivativeValue;
if( this->m_UseExplicitPDFDerivatives )
{
JointPDFValueType * ptr = derivPtr + parameterIndex;
*(ptr) -= derivativeContribution;
}
else
{
this->m_MetricDerivative[parameterIndex] += precomputedWeight * derivativeContribution;
}
} //end mu for loop
} //end dim for loop
} // end if-block transform is BSpline
}
// Method to reinitialize the seed of the random number generator
template < class TFixedImage, class TMovingImage > void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ReinitializeSeed()
{
Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed();
}
// Method to reinitialize the seed of the random number generator
template < class TFixedImage, class TMovingImage > void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::ReinitializeSeed(int seed)
{
Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed(
seed);
}
/**
* Cache pre-transformed points, weights and indices.
* This method is only called if the flag UseCachingOfBSplineWeights is ON.
*/
template < class TFixedImage, class TMovingImage >
void
MattesMutualInformationImageToImageMetric<TFixedImage,TMovingImage>
::PreComputeTransformValues()
{
// Create all zero dummy transform parameters
ParametersType dummyParameters( this->m_Transform->GetNumberOfParameters() );
dummyParameters.Fill( 0.0 );
this->m_Transform->SetParameters( dummyParameters );
// Cycle through each sampled fixed image point
BSplineTransformWeightsType weights( m_NumBSplineWeights );
BSplineTransformIndexArrayType indices( m_NumBSplineWeights );
bool valid;
MovingImagePointType mappedPoint;
// Declare iterators for iteration over the sample container
typename FixedImageSpatialSampleContainer::const_iterator fiter;
typename FixedImageSpatialSampleContainer::const_iterator fend =
m_FixedImageSamples.end();
unsigned long counter = 0;
for( fiter = m_FixedImageSamples.begin(); fiter != fend; ++fiter, counter++ )
{
m_BSplineTransform->TransformPoint(
m_FixedImageSamples[counter].FixedImagePointValue,
mappedPoint, weights, indices, valid );
for( unsigned long k = 0; k < m_NumBSplineWeights; k++ )
{
m_BSplineTransformWeightsArray[counter][k] = weights[k];
m_BSplineTransformIndicesArray[counter][k] = indices[k];
}
m_PreTransformPointsArray[counter] = mappedPoint;
m_WithinSupportRegionArray[counter] = valid;
}
}
} // end namespace itk
#endif
#endif
|