File: itkMeanSquareRegistrationFunction.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (203 lines) | stat: -rw-r--r-- 5,869 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkMeanSquareRegistrationFunction.txx,v $
  Language:  C++
  Date:      $Date: 2008-02-03 04:05:28 $
  Version:   $Revision: 1.13 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkMeanSquareRegistrationFunction_txx_
#define _itkMeanSquareRegistrationFunction_txx_

#include "itkMeanSquareRegistrationFunction.h"
#include "itkExceptionObject.h"
#include "vnl/vnl_math.h"

namespace itk {

/*
 * Default constructor
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::MeanSquareRegistrationFunction()
{

  RadiusType r;
  unsigned int j;
  for( j = 0; j < ImageDimension; j++ )
    {
    r[j] = 0;
    }
  this->SetRadius(r);

  this->SetEnergy(0.0);
  m_TimeStep = 1.0;
  m_DenominatorThreshold = 1e-9;
  m_IntensityDifferenceThreshold = 0.001;
  this->SetMovingImage(NULL);
  this->SetFixedImage(NULL);
  m_FixedImageSpacing.Fill( 1.0 );
  m_FixedImageOrigin.Fill( 0.0 );
  m_FixedImageGradientCalculator = GradientCalculatorType::New();


  typename DefaultInterpolatorType::Pointer interp =
    DefaultInterpolatorType::New();

  m_MovingImageInterpolator = static_cast<InterpolatorType*>(
    interp.GetPointer() );


}


/*
 * Standard "PrintSelf" method.
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
/*
  os << indent << "MovingImageIterpolator: ";
  os << m_MovingImageInterpolator.GetPointer() << std::endl;
  os << indent << "FixedImageGradientCalculator: ";
  os << m_FixedImageGradientCalculator.GetPointer() << std::endl;
  os << indent << "DenominatorThreshold: ";
  os << m_DenominatorThreshold << std::endl;
  os << indent << "IntensityDifferenceThreshold: ";
  os << m_IntensityDifferenceThreshold << std::endl;
*/
}


/*
 * Set the function state values before each iteration
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
void
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::InitializeIteration()
{
  if( !this->GetMovingImage() || !this->GetFixedImage() || !m_MovingImageInterpolator )
    {
    itkExceptionMacro( << "MovingImage, FixedImage and/or Interpolator not set" );
    }

  // cache fixed image information
  m_FixedImageSpacing    = this->GetFixedImage()->GetSpacing();
  m_FixedImageOrigin     = this->GetFixedImage()->GetOrigin();

  // setup gradient calculator
  m_FixedImageGradientCalculator->SetInputImage( this->GetFixedImage() );

  // setup moving image interpolator
  m_MovingImageInterpolator->SetInputImage( this->GetMovingImage() );
  
  this->SetEnergy(0.0);
}


/*
 * Compute update at a non boundary neighbourhood
 */
template <class TFixedImage, class TMovingImage, class TDeformationField>
typename MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::PixelType
MeanSquareRegistrationFunction<TFixedImage,TMovingImage,TDeformationField>
::ComputeUpdate(const NeighborhoodType &it, void * itkNotUsed(globalData),
                const FloatOffsetType& itkNotUsed(offset)) 
{

//std::cout << " Update " << std::endl;
  PixelType update;
  unsigned int j;

  IndexType index = it.GetIndex();

  // Get fixed image related information
  double fixedValue;
  CovariantVectorType fixedGradient;
  double fixedGradientSquaredMagnitude = 0;

  // Note: no need to check the index is within
  // fixed image buffer. This is done by the external filter.
  fixedValue = (double) this->GetFixedImage()->GetPixel( index );
  fixedGradient = m_FixedImageGradientCalculator->EvaluateAtIndex( index );
  for( j = 0; j < ImageDimension; j++ )
    {
    fixedGradientSquaredMagnitude += vnl_math_sqr( fixedGradient[j] ) * m_FixedImageSpacing[j];
    } 

  // Get moving image related information
  double movingValue;
  PointType mappedPoint;
  DeformationFieldPixelType itvec=this->GetDeformationField()->GetPixel(index);

  for( j = 0; j < ImageDimension; j++ )
    {
     mappedPoint[j] = double( index[j] ) * m_FixedImageSpacing[j] + 
      m_FixedImageOrigin[j];
//     mappedPoint[j] += it.GetCenterPixel()[j];
      mappedPoint[j] += itvec[j];
    }
  if( m_MovingImageInterpolator->IsInsideBuffer( mappedPoint ) )
    {
    movingValue = m_MovingImageInterpolator->Evaluate( mappedPoint );
    }
  else
    {
    movingValue = 0.0;
    }

  // Compute update
  double speedValue = fixedValue - movingValue;
  this->m_Energy+=speedValue*speedValue;

  bool normalizemetric=this->GetNormalizeGradient();  
  double denominator = 1.0;
  if (normalizemetric) 
  {  
    denominator = speedValue*speedValue *fixedGradientSquaredMagnitude;
    denominator = vcl_sqrt(denominator);
  }
  if (denominator == 0) denominator=1.0;
 
  if ( vnl_math_abs(speedValue) < m_IntensityDifferenceThreshold || 
    denominator < m_DenominatorThreshold )
    {
    for( j = 0; j < ImageDimension; j++ )
      {
      update[j] = 0.0;
      }
    return update;
    }

  for( j = 0; j < ImageDimension; j++ )
    {
    update[j] = speedValue * fixedGradient[j] * vnl_math_sqr(m_FixedImageSpacing[j]) / 
      denominator*this->m_GradientStep;
    }

  return update;

}

 



} // end namespace itk

#endif