1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkOrthogonalSwath2DPathFilter.txx,v $
Language: C++
Date: $Date: 2007-04-14 11:54:33 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkOrthogonalSwath2DPathFilter_txx
#define __itkOrthogonalSwath2DPathFilter_txx
#include "itkOrthogonalSwath2DPathFilter.h"
#include "vnl/vnl_math.h"
#include "itkNumericTraits.h"
namespace itk
{
/**
* Constructor
*/
template <class TParametricPath, class TSwathMeritImage>
OrthogonalSwath2DPathFilter<TParametricPath, TSwathMeritImage>
::OrthogonalSwath2DPathFilter()
{
SizeType size;
// Initialize the member variables
size[0]=0;
size[1]=0;
m_SwathSize = size;
m_StepValues = NULL;
m_MeritValues = NULL;
m_OptimumStepsValues = NULL;
m_FinalOffsetValues = OrthogonalCorrectionTableType::New();
}
/**
* Destructor
*/
template <class TParametricPath, class TSwathMeritImage>
OrthogonalSwath2DPathFilter<TParametricPath, TSwathMeritImage>
::~OrthogonalSwath2DPathFilter()
{
if(m_StepValues) delete [] m_StepValues;
if(m_MeritValues) delete [] m_MeritValues;
if(m_OptimumStepsValues) delete [] m_OptimumStepsValues;
}
/**
* GenerateData Performs the reflection
*/
template <class TParametricPath, class TSwathMeritImage>
void
OrthogonalSwath2DPathFilter<TParametricPath, TSwathMeritImage>
::GenerateData( void )
{
// Get a convenience pointer
ImageConstPointer swathMeritImage = this->GetImageInput();
// Re-initialize the member variables
m_SwathSize = swathMeritImage->GetLargestPossibleRegion().GetSize();
if(m_StepValues) delete [] m_StepValues;
if(m_MeritValues) delete [] m_MeritValues;
if(m_OptimumStepsValues) delete [] m_OptimumStepsValues;
m_StepValues = new int[ m_SwathSize[0] * m_SwathSize[1] * m_SwathSize[1] ];
m_MeritValues= new double[ m_SwathSize[0] * m_SwathSize[1] * m_SwathSize[1] ];
m_OptimumStepsValues = new int[ m_SwathSize[0] ];
m_FinalOffsetValues->Initialize();
// Perform the remaining calculations; use dynamic programming
// current swath column (all previous columns have been fully processed)
unsigned int x;
// current first row and last row of the swath.
unsigned int F,L;
// index used to access the processed swath image; filled in with x, F, & L
IndexType index;
// CalcFirstStep (x=0)
// Enter the initial merit values
index[0]=0;
for(F=0;F<m_SwathSize[1];F++) for(L=0;L<m_SwathSize[1];L++)
{
if(F==L)
{
index[1]=F;
MeritValue(F,L,0) = (double) swathMeritImage->GetPixel(index);
StepValue( F,L,0) = F;
}
else
{
MeritValue(F,L,0) = NumericTraits<double>::NonpositiveMin();
StepValue( F,L,0) = F;
}
}
// end of double for-loop covering F & L
// PrepForRemainingSteps
for(F=0;F<m_SwathSize[1];F++) for(L=0;L<m_SwathSize[1];L++)
{
// find merit for x=1
if( vnl_math_abs(F-L) <= 1 )
{
IndexType index2; // we need a second index here
index[0]=0;
index[1]=F;
index2[0]=1;
index2[1]=L;
// Here we know in advance that Pixel(0,F) = Max(l=L-1..L+1){Merit(F,l,0)}
MeritValue(F,L,1) = double( swathMeritImage->GetPixel(index)
+ swathMeritImage->GetPixel(index2) );
}
else
{
MeritValue(F,L,1) = NumericTraits<double>::NonpositiveMin();
}
// Enter the final step values (x=SWATH_COLUMNS-1)
StepValue(F,L,m_SwathSize[0]-1) = L;
}
// end of double for-loop covering F & L
// CalcRestPath
for(x=1;x<m_SwathSize[0]-1;x++)
{
for(F=0;F<m_SwathSize[1]; F++)
{
for(L=0;L<m_SwathSize[1]; L++)
{
int bestL = FindAndStoreBestErrorStep(x,F,L);
index[0]=x+1;
index[1]=L;
MeritValue(F,L,x+1) = MeritValue(F,bestL,x) +
double( swathMeritImage->GetPixel(index) );
}
}
}
// end of tripple for-loop covering x & F & L
// Find the best starting and ending points (F & L) for the path
int bestF = 0, bestL = 0;
double meritTemp, meritMax=NumericTraits<double>::NonpositiveMin();
for(F=0;F<m_SwathSize[1];F++) for(L=0;L<m_SwathSize[1];L++)
{
if( vnl_math_abs(F-L) <= 1 ) // only accept closed paths
{
meritTemp = MeritValue( F, L, m_SwathSize[0]-1 );
if( meritTemp > meritMax )
{
meritMax = meritTemp;
bestF = F;
bestL = L;
}
}
}
// end of double for-loop covering F & L
// Fill in the optimum path error-step (orthogonal correction) values
m_OptimumStepsValues[ m_SwathSize[0]-1 ] = bestL;
for(x = m_SwathSize[0]-2;; x--)
{
m_OptimumStepsValues[x] = StepValue(bestF, m_OptimumStepsValues[x+1], x);
if( 0 == x ) break;
}
// Convert from absolute indicies to +/- orthogonal offset values
for(x=0;x<m_SwathSize[0];x++)
{
m_FinalOffsetValues->InsertElement(
x, double( m_OptimumStepsValues[x] - int(m_SwathSize[1]/2) ) );
}
// setup the output path
OutputPathPointer outputPtr = this->GetOutput(0);
outputPtr->SetOriginalPath(this->GetPathInput());
outputPtr->SetOrthogonalCorrectionTable(m_FinalOffsetValues);
}
template <class TParametricPath, class TSwathMeritImage>
void
OrthogonalSwath2DPathFilter<TParametricPath, TSwathMeritImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "StepValues: " << m_StepValues << std::endl;
os << indent << "MeritValues: " << m_MeritValues << std::endl;
os << indent << "OptimumStepsValues: " << m_OptimumStepsValues << std::endl;
os << indent << "FinalOffsetValues: " << m_FinalOffsetValues << std::endl;
}
// The next three functions are private helper functions
template <class TParametricPath, class TSwathMeritImage>
unsigned int
OrthogonalSwath2DPathFilter<TParametricPath, TSwathMeritImage>
::FindAndStoreBestErrorStep(unsigned int x, unsigned int F, unsigned int L)
{
unsigned int bestL; // L with largest merit of L and its 2 neighbors L-1 & L+1
// Handle perimeter boundaries of the vert. gradient image
if(L==0)
{
if( MeritValue(F,L+1,x) > MeritValue(F,L,x) )
{
bestL = L+1;
}
else
{
bestL = L;
}
}
else if(L==m_SwathSize[1]-1)
{
if( MeritValue(F,L-1,x) > MeritValue(F,L,x) )
{
bestL = L-1;
}
else
{
bestL = L;
}
}
else
{
// We are now free to consider all 3 cases for bestL
if( MeritValue(F,L+1,x) > MeritValue(F,L,x)
&& MeritValue(F,L+1,x) > MeritValue(F,L-1,x) )
{
bestL = L+1;
}
else if( MeritValue(F,L-1,x) > MeritValue(F,L,x)
&& MeritValue(F,L-1,x) > MeritValue(F,L+1,x) )
{
bestL = L-1;
}
else
{
bestL = L;
}
}
StepValue(F,L,x) = bestL;
return bestL;
}
} // end namespace itk
#endif
|