1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkOtsuMultipleThresholdsCalculator.txx,v $
Language: C++
Date: $Date: 2005-01-13 15:36:46 $
Version: $Revision: 1.4 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkOtsuMultipleThresholdsCalculator_txx
#define _itkOtsuMultipleThresholdsCalculator_txx
#include "itkOtsuMultipleThresholdsCalculator.h"
namespace itk
{
template<class TInputHistogram>
OtsuMultipleThresholdsCalculator<TInputHistogram>
::OtsuMultipleThresholdsCalculator()
{
m_NumberOfThresholds = 1;
m_Output.resize(m_NumberOfThresholds);
std::fill(m_Output.begin(),m_Output.end(),NumericTraits<MeasurementType>::Zero);
}
template<class TInputHistogram>
const typename OtsuMultipleThresholdsCalculator<TInputHistogram>::OutputType&
OtsuMultipleThresholdsCalculator< TInputHistogram >
::GetOutput()
{
return m_Output ;
}
/*
* Increment the thresholds of one position along the histogram
*/
template<class TInputHistogram>
bool
OtsuMultipleThresholdsCalculator<TInputHistogram>
::IncrementThresholds(InstanceIdentifierVectorType& thresholdIndexes, MeanType globalMean, MeanVectorType& classMean, FrequencyVectorType& classFrequency)
{
typename TInputHistogram::ConstPointer histogram = this->GetInputHistogram();
unsigned long numberOfHistogramBins = histogram->Size();
unsigned long numberOfClasses = classMean.size();
MeanType meanOld;
FrequencyType freqOld;
unsigned int k;
int j;
// from the upper threshold down
for(j=static_cast<int>(m_NumberOfThresholds-1); j>=0; j--)
{
// if this threshold can be incremented (i.e. we're not at the end of the histogram)
if (thresholdIndexes[j] < numberOfHistogramBins - 2 - (m_NumberOfThresholds-1 - j) )
{
// increment it and update mean and frequency of the class bounded by the threshold
++thresholdIndexes[j];
meanOld = classMean[j];
freqOld = classFrequency[j];
classFrequency[j] += histogram->GetFrequency(thresholdIndexes[j]);
if (NumericTraits<FrequencyType>::IsPositive(classFrequency[j]))
{
classMean[j] = (meanOld * static_cast<MeanType>(freqOld) + static_cast<MeanType>(histogram->GetMeasurementVector(thresholdIndexes[j])[0]) * static_cast<MeanType>(histogram->GetFrequency(thresholdIndexes[j]))) / static_cast<MeanType>(classFrequency[j]);
}
else
{
classMean[j] = NumericTraits<MeanType>::Zero;
}
// set higher thresholds adjacent to their previous ones, and update mean and frequency of the respective classes
for (k=j+1; k<m_NumberOfThresholds; k++)
{
thresholdIndexes[k] = thresholdIndexes[k-1] + 1;
classFrequency[k] = histogram->GetFrequency(thresholdIndexes[k]);
if (NumericTraits<FrequencyType>::IsPositive(classFrequency[k]))
{
classMean[k] = static_cast<MeanType>(histogram->GetMeasurementVector(thresholdIndexes[k])[0]);
}
else
{
classMean[k] = NumericTraits<MeanType>::Zero;
}
}
// update mean and frequency of the highest class
classFrequency[numberOfClasses-1] = histogram->GetTotalFrequency();
classMean[numberOfClasses-1] = globalMean * histogram->GetTotalFrequency();
for(k=0; k<numberOfClasses-1; k++)
{
classFrequency[numberOfClasses-1] -= classFrequency[k];
classMean[numberOfClasses-1] -= classMean[k] * static_cast<MeanType>(classFrequency[k]);
}
if (NumericTraits<FrequencyType>::IsPositive(classFrequency[numberOfClasses-1]))
{
classMean[numberOfClasses-1] /= static_cast<MeanType>(classFrequency[numberOfClasses-1]);
}
else
{
classMean[numberOfClasses-1] = NumericTraits<MeanType>::Zero;
}
// exit the for loop if a threshold has been incremented
break;
}
else // if this threshold can't be incremented
{
// if it's the lowest threshold
if (j==0)
{
// we couldn't increment because we're done
return false;
}
}
}
// we incremented
return true;
}
/*
* Compute Otsu's thresholds
*/
template<class TInputHistogram>
void
OtsuMultipleThresholdsCalculator<TInputHistogram>
::GenerateData()
{
typename TInputHistogram::ConstPointer histogram = this->GetInputHistogram();
// TODO: as an improvement, the class could accept multi-dimensional histograms
// and the user could specify the dimension to apply the algorithm to.
if (histogram->GetSize().GetSizeDimension() != 1)
{
itkExceptionMacro(<<"Histogram must be 1-dimensional.");
}
// compute global mean
typename TInputHistogram::ConstIterator iter = histogram->Begin() ;
typename TInputHistogram::ConstIterator end = histogram->End() ;
MeanType globalMean = NumericTraits<MeanType>::Zero;
FrequencyType globalFrequency = histogram->GetTotalFrequency();
while (iter != end)
{
globalMean += static_cast<MeanType>(iter.GetMeasurementVector()[0]) * static_cast<MeanType>(iter.GetFrequency());
++iter ;
}
globalMean /= static_cast<MeanType>(globalFrequency);
unsigned long numberOfClasses = m_NumberOfThresholds + 1;
// initialize thresholds
InstanceIdentifierVectorType thresholdIndexes(m_NumberOfThresholds);
unsigned long j;
for(j=0; j<m_NumberOfThresholds; j++)
{
thresholdIndexes[j] = j;
}
InstanceIdentifierVectorType maxVarThresholdIndexes = thresholdIndexes;
// compute frequency and mean of initial classes
FrequencyType freqSum = NumericTraits<FrequencyType>::Zero;
FrequencyVectorType classFrequency(numberOfClasses);
for (j=0; j<numberOfClasses-1; j++)
{
classFrequency[j] = histogram->GetFrequency(thresholdIndexes[j]);
freqSum += classFrequency[j];
}
classFrequency[numberOfClasses-1] = globalFrequency - freqSum;
MeanType meanSum = NumericTraits<MeanType>::Zero;
MeanVectorType classMean(numberOfClasses);
for (j=0; j < numberOfClasses-1; j++)
{
if (NumericTraits<FrequencyType>::IsPositive(classFrequency[j]))
{
classMean[j] = static_cast<MeanType>(histogram->GetMeasurementVector(j)[0]);
}
else
{
classMean[j] = NumericTraits<MeanType>::Zero;
}
meanSum += classMean[j] * static_cast<MeanType>(classFrequency[j]);
}
if (NumericTraits<FrequencyType>::IsPositive(classFrequency[numberOfClasses-1]))
{
classMean[numberOfClasses-1] = (globalMean * static_cast<MeanType>(globalFrequency) - meanSum) / static_cast<MeanType>(classFrequency[numberOfClasses-1]);
}
else
{
classMean[numberOfClasses-1] = NumericTraits<MeanType>::Zero;
}
VarianceType maxVarBetween = NumericTraits<VarianceType>::Zero;
for (j=0; j<numberOfClasses; j++)
{
maxVarBetween += static_cast<VarianceType>(classFrequency[j]) * static_cast<VarianceType>((globalMean - classMean[j]) * (globalMean - classMean[j]));
}
// explore all possible threshold configurations and choose the one that yields maximum between-class variance
while (Self::IncrementThresholds(thresholdIndexes, globalMean, classMean, classFrequency))
{
VarianceType varBetween = NumericTraits<VarianceType>::Zero;
for (j=0; j<numberOfClasses; j++)
{
varBetween += static_cast<VarianceType>(classFrequency[j]) * static_cast<VarianceType>((globalMean - classMean[j]) * (globalMean - classMean[j]));
}
if (varBetween > maxVarBetween)
{
maxVarBetween = varBetween;
maxVarThresholdIndexes = thresholdIndexes;
}
}
// copy corresponding bin max to threshold vector
m_Output.resize(m_NumberOfThresholds);
for (j=0; j<m_NumberOfThresholds; j++)
{
m_Output[j] = histogram->GetBinMax(0,maxVarThresholdIndexes[j]);
}
}
template<class TInputHistogram>
void
OtsuMultipleThresholdsCalculator<TInputHistogram>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "NumberOfThresholds: " << m_NumberOfThresholds;
os << indent << "Output: ";
for (unsigned long j=0; j<m_NumberOfThresholds; j++)
{
os << m_Output[j] << " ";
}
os << std::endl;
}
} // end namespace itk
#endif
|