1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkOtsuThresholdImageCalculator.txx,v $
Language: C++
Date: $Date: 2006-03-28 23:46:10 $
Version: $Revision: 1.8 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkOtsuThresholdImageCalculator_txx
#define _itkOtsuThresholdImageCalculator_txx
#include "itkOtsuThresholdImageCalculator.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "vnl/vnl_math.h"
namespace itk
{
/*
* Constructor
*/
template<class TInputImage>
OtsuThresholdImageCalculator<TInputImage>
::OtsuThresholdImageCalculator()
{
m_Image = NULL;
m_Threshold = NumericTraits<PixelType>::Zero;
m_NumberOfHistogramBins = 128;
m_RegionSetByUser = false;
}
/*
* Compute the Otsu's threshold
*/
template<class TInputImage>
void
OtsuThresholdImageCalculator<TInputImage>
::Compute(void)
{
unsigned int j;
if ( !m_Image ) { return; }
if( !m_RegionSetByUser )
{
m_Region = m_Image->GetRequestedRegion();
}
double totalPixels = (double) m_Region.GetNumberOfPixels();
if ( totalPixels == 0 ) { return; }
// compute image max and min
typedef MinimumMaximumImageCalculator<TInputImage> RangeCalculator;
typename RangeCalculator::Pointer rangeCalculator = RangeCalculator::New();
rangeCalculator->SetImage( m_Image );
rangeCalculator->Compute();
PixelType imageMin = rangeCalculator->GetMinimum();
PixelType imageMax = rangeCalculator->GetMaximum();
if ( imageMin >= imageMax )
{
m_Threshold = imageMin;
return;
}
// create a histogram
std::vector<double> relativeFrequency;
relativeFrequency.resize( m_NumberOfHistogramBins );
for ( j = 0; j < m_NumberOfHistogramBins; j++ )
{
relativeFrequency[j] = 0.0;
}
double binMultiplier = (double) m_NumberOfHistogramBins /
(double) ( imageMax - imageMin );
typedef ImageRegionConstIteratorWithIndex<TInputImage> Iterator;
Iterator iter( m_Image, m_Region );
while ( !iter.IsAtEnd() )
{
unsigned int binNumber;
PixelType value = iter.Get();
if ( value == imageMin )
{
binNumber = 0;
}
else
{
binNumber = (unsigned int) vcl_ceil((value - imageMin) * binMultiplier ) - 1;
if ( binNumber == m_NumberOfHistogramBins ) // in case of rounding errors
{
binNumber -= 1;
}
}
relativeFrequency[binNumber] += 1.0;
++iter;
}
// normalize the frequencies
double totalMean = 0.0;
for ( j = 0; j < m_NumberOfHistogramBins; j++ )
{
relativeFrequency[j] /= totalPixels;
totalMean += (j+1) * relativeFrequency[j];
}
// compute Otsu's threshold by maximizing the between-class
// variance
double freqLeft = relativeFrequency[0];
double meanLeft = 1.0;
double meanRight = ( totalMean - freqLeft ) / ( 1.0 - freqLeft );
double maxVarBetween = freqLeft * ( 1.0 - freqLeft ) *
vnl_math_sqr( meanLeft - meanRight );
int maxBinNumber = 0;
double freqLeftOld = freqLeft;
double meanLeftOld = meanLeft;
for ( j = 1; j < m_NumberOfHistogramBins; j++ )
{
freqLeft += relativeFrequency[j];
meanLeft = ( meanLeftOld * freqLeftOld +
(j+1) * relativeFrequency[j] ) / freqLeft;
if (freqLeft == 1.0)
{
meanRight = 0.0;
}
else
{
meanRight = ( totalMean - meanLeft * freqLeft ) /
( 1.0 - freqLeft );
}
double varBetween = freqLeft * ( 1.0 - freqLeft ) *
vnl_math_sqr( meanLeft - meanRight );
if ( varBetween > maxVarBetween )
{
maxVarBetween = varBetween;
maxBinNumber = j;
}
// cache old values
freqLeftOld = freqLeft;
meanLeftOld = meanLeft;
}
m_Threshold = static_cast<PixelType>( imageMin +
( maxBinNumber + 1 ) / binMultiplier );
}
template<class TInputImage>
void
OtsuThresholdImageCalculator<TInputImage>
::SetRegion( const RegionType & region )
{
m_Region = region;
m_RegionSetByUser = true;
}
template<class TInputImage>
void
OtsuThresholdImageCalculator<TInputImage>
::PrintSelf( std::ostream& os, Indent indent ) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Threshold: " << m_Threshold << std::endl;
os << indent << "NumberOfHistogramBins: " << m_NumberOfHistogramBins << std::endl;
os << indent << "Image: " << m_Image.GetPointer() << std::endl;
}
} // end namespace itk
#endif
|