File: itkRGBGibbsPriorFilter.txx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (860 lines) | stat: -rw-r--r-- 22,565 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkRGBGibbsPriorFilter.txx,v $
  Language:  C++
  Date:      $Date: 2008-01-27 18:29:24 $
  Version:   $Revision: 1.47 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkRGBGibbsPriorFilter_txx
#define _itkRGBGibbsPriorFilter_txx

#include "itkRGBGibbsPriorFilter.h"
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

#define RGBGibbsPriorFilterNeedsDebugging 1

namespace itk
{
/* Set intial value of some parameters in the constructor */
template <typename TInputImage, typename TClassifiedImage>
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::RGBGibbsPriorFilter(void):
  m_InputImage(0),
  m_TrainingImage(0),
  m_LabelledImage(0),
  m_NumberOfClasses(0),
  m_MaximumNumberOfIterations(10),
  m_ClassifierPtr(0),
  m_BoundaryGradient(7),
  m_BoundaryWeight(1),
  m_GibbsPriorWeight(1),
  m_StartRadius(10),
  m_RecursiveNumber(0),
  m_LabelStatus(0),
  m_MediumImage(0),
  m_Temp(0),
  m_ImageWidth(0),
  m_ImageHeight(0),
  m_ImageDepth(0),
  m_ClusterSize(10),
  m_ObjectLabel(1),
  m_VecDim(0),
  m_LowPoint(),
  m_Region(NULL),
  m_RegionCount(NULL),
  m_CliqueWeight_1(0.0),
  m_CliqueWeight_2(0.0),
  m_CliqueWeight_3(0.0),
  m_CliqueWeight_4(0.0),
  m_CliqueWeight_5(0.0),
  m_CliqueWeight_6(0.0),
  m_ObjectThreshold(5.0)
{
  m_StartPoint.Fill(0);
}

template <typename TInputImage, typename TClassifiedImage>
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::~RGBGibbsPriorFilter()
{
  if (m_Region)
    {
    delete [] m_Region;
    }
  if (m_RegionCount)
    {
    delete [] m_RegionCount;
    }
  if (m_LabelStatus)
    {
    delete [] m_LabelStatus;
    }
}
/* Set the labelled image. */
template<typename TInputImage, typename TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::SetLabelledImage(LabelledImageType image)
{
  m_LabelledImage = image;
  this->Allocate();
}

/* GenerateMediumImage method. */
template <class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::GenerateMediumImage()
{
  InputImageConstPointer input = this->GetInput();
  m_MediumImage = TInputImage::New() ;
  m_MediumImage->SetLargestPossibleRegion( input->GetLargestPossibleRegion() );
  m_MediumImage->SetRequestedRegionToLargestPossibleRegion();
  m_MediumImage->SetBufferedRegion( m_MediumImage->GetRequestedRegion() );
  m_MediumImage->Allocate();
}

/* Allocate the memeory for classified image. */
template<class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::Allocate()
{
  /* Get the image width/height and depth. */  
  InputImageSizeType inputImageSize = m_InputImage->GetBufferedRegion().GetSize();
  m_ImageWidth  = inputImageSize[0];
  m_ImageHeight = inputImageSize[1];
  m_ImageDepth  = inputImageSize[2];
 
  const unsigned int numberOfPixels = m_ImageWidth*m_ImageHeight*m_ImageDepth; 
  m_LabelStatus = new LabelType[ numberOfPixels ];
  for( unsigned int index = 0; index < numberOfPixels; index++ ) 
    {
    m_LabelStatus[index]=1;
    }

}

/* Smooth the image in piecewise fashion. */
template <typename TInputImage, typename TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::GreyScalarBoundary(LabelledImageIndexType Index3D)
{
  int change;
  int signs[4];
  int x;
  int numx;
  LabelType origin;
  LabelType neighbors[4];

  for (unsigned int rgb = 0; rgb < m_VecDim; rgb++) 
    {
    origin = static_cast<LabelType>( m_InputImage->GetPixel( Index3D )[rgb] );
    unsigned int j = 0;

    for(unsigned int i = 0; i < ImageDimension-1; i++) 
      {
      Index3D[i]--;
      neighbors[j] = static_cast<LabelType>( m_InputImage->GetPixel( Index3D )[rgb] );
      Index3D[i]++;
      j++;

      Index3D[i]++;
      neighbors[j] = static_cast<LabelType>( m_InputImage->GetPixel( Index3D )[rgb] );
      Index3D[i]--;
      j++;
      }

    for (unsigned int ii=0; ii<4; ii++) 
      {
      signs[ii] = 0;  
      }

    /* Compute the minimum points of piecewise smoothness */ 
    m_LowPoint[rgb] = origin;
    change = 1;
    x = origin;
    numx = 1;

    while ( change > 0 ) 
      {
      change = 0;
      
      for (unsigned int i=0; i<4; i++) 
        {
        if (signs[i] == 0) 
          {
          const LabelType difference = 
            static_cast< LabelType > ( vnl_math_abs(m_LowPoint[rgb] - neighbors[i]) );
          if ( difference < m_BoundaryGradient ) 
            {
            numx++;
            x += neighbors[i];
            signs[i]++;
            change++;
            }
          }
        }

      m_LowPoint[rgb] = x/numx;

      for (unsigned int i=0; i<4; i++) 
        {
        if (signs[i] == 1) 
          {
          const LabelType difference = 
            static_cast< LabelType > ( vnl_math_abs(m_LowPoint[rgb] - neighbors[i]) );
          if ( difference > m_BoundaryGradient ) 
            {
            numx--;
            x -= neighbors[i];
            signs[i]--;
            change++;
            }
          }
        }

      m_LowPoint[rgb] = x/numx;

      }
    }
}

/* Set the classifier. */
template<typename TInputImage, typename TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::SetClassifier( typename ClassifierType::Pointer ptrToClassifier )
{
  m_ClassifierPtr = ptrToClassifier;
  m_ClassifierPtr->SetNumberOfClasses( m_NumberOfClasses );
}

/* Set the training image. */
template<typename TInputImage, typename TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::SetTrainingImage( TrainingImageType image )
{
  m_TrainingImage = image;
}

/* Check if 2 number are identical. */
template <typename TInputImage, typename TClassifiedImage>
int
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::Sim(int a, int b)
{
  if (a == b) return 1;
  return 0;
}

/* GibbsTotalEnergy method that minimizes the local characteristic(f_2) term
 * in the energy function. */
template <typename TInputImage, typename TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::GibbsTotalEnergy(int i)
{
  LabelledImageIndexType offsetIndex3D;
  offsetIndex3D.Fill(0);

  int size = m_ImageWidth * m_ImageHeight * m_ImageDepth;
  int frame = m_ImageWidth * m_ImageHeight;
  int rowsize = m_ImageWidth;

  double energy[2];
  double difenergy;
  LabelType label;
  LabelType originlabel;
  LabelType f[8];
  unsigned int j;
  unsigned int k;
  unsigned int neighborcount=0;

  offsetIndex3D[2] = i / frame;
  offsetIndex3D[1] = (i % frame) / rowsize;
  offsetIndex3D[0] = (i % frame) % rowsize;

  if ((i > rowsize - 1)&&((i%rowsize) != rowsize - 1)&&
      (i < size - rowsize)&&((i%rowsize) != 0)) {
  offsetIndex3D[0]--;
  offsetIndex3D[1]--;
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  
  offsetIndex3D[0]++;
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  
  offsetIndex3D[0]++;
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  
  offsetIndex3D[1]++;  
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
   
  offsetIndex3D[1]++;
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  
  offsetIndex3D[0]--;
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  
  offsetIndex3D[0]--;
  f[neighborcount++] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  
  offsetIndex3D[1]--;
  f[neighborcount] = (int)m_LabelledImage->GetPixel( offsetIndex3D );
  }

  k = 0;
  for( j=0; j<8; j++ ) 
    {
    if (f[j] == m_ObjectLabel ) 
      {
      k++;
      }
    }

  bool changeflag = (k > 3);

  for(unsigned int jj = 0; jj < 2; jj++) 
    {
    energy[jj] = 0;
    energy[jj] += GibbsEnergy(i,           0, jj);
    energy[jj] += GibbsEnergy(i+rowsize+1, 1, jj);
    energy[jj] += GibbsEnergy(i+rowsize,   2, jj);
    energy[jj] += GibbsEnergy(i+rowsize-1, 3, jj);
    energy[jj] += GibbsEnergy(i-1,         4, jj);
    energy[jj] += GibbsEnergy(i-rowsize-1, 5, jj);
    energy[jj] += GibbsEnergy(i-rowsize,   6, jj);
    energy[jj] += GibbsEnergy(i-rowsize+1, 7, jj);
    energy[jj] += GibbsEnergy(i+1,         8, jj);
    if ( m_LabelStatus[i] == jj ) 
      {
      energy[jj] += -3;
      }
    else 
      {
      energy[jj] += 3;  
      }
    }

  if ( energy[0] < energy[1] ) 
    {
    label = 0;
    }
  else 
    {
    label = 1;
    }

  originlabel = m_LabelledImage->GetPixel(offsetIndex3D);
  if (originlabel != label) 
    {
    m_LabelledImage->SetPixel(offsetIndex3D, label);
    }
  

  else {
  if (changeflag) {
  difenergy = energy[label]-energy[1-label];
  double rand_num = (double) (rand()/32768.0);
  double energy_num = (double) (exp((double) (difenergy*0.5*size/(2*size-m_Temp))));
  if ( rand_num < energy_num ) m_LabelledImage->SetPixel(offsetIndex3D, 1-label);
  }
  }
}

template <typename TInputImage, typename TClassifiedImage>
double
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::GibbsEnergy(unsigned int i, unsigned int k, unsigned int k1)
{
  LabelledImageRegionIterator  
    labelledImageIt(m_LabelledImage, m_LabelledImage->GetBufferedRegion());

  LabelType f[8];
  int j;
  unsigned int neighborcount = 0;
  int simnum    = 0;
  int changenum = 0;
  bool changeflag;
  double res = 0.0;

  LabelledImageIndexType offsetIndex3D;
  offsetIndex3D.Fill(0);

  LabelledImagePixelType labelledPixel = 0;

  const unsigned int size     = m_ImageWidth * m_ImageHeight * m_ImageDepth;
  const unsigned int frame    = m_ImageWidth * m_ImageHeight;
  const unsigned int rowsize  = m_ImageWidth;

  
  offsetIndex3D[1] = (i % frame) / rowsize;
  offsetIndex3D[0] = (i % frame) % rowsize;
  
  if (k != 0) 
    {
    labelledPixel = 
      ( LabelledImagePixelType ) m_LabelledImage->GetPixel( offsetIndex3D );
    }

  if (     (      i       > rowsize - 1    )
           && ( (i%rowsize) != rowsize - 1    )
           && (      i       < size - rowsize )
           && ( (i%rowsize) != 0              )  ) 
    {

    offsetIndex3D[0]--;
    offsetIndex3D[1]--;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
  
    offsetIndex3D[0]++;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
  
    offsetIndex3D[0]++;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
  
    offsetIndex3D[1]++;  
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
  
    offsetIndex3D[1]++;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
  
    offsetIndex3D[0]--;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
  
    offsetIndex3D[0]--;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );

    offsetIndex3D[1]--;
    f[neighborcount++] = static_cast< LabelType > ( m_LabelledImage->GetPixel( offsetIndex3D ) );
    }

  /* Pixels at the edge of image will be dropped. */
  if (neighborcount != 8) 
    {
    return 0.0; 
    }

  if (k != 0) 
    {
    f[k-1] = k1;
    }
  else 
    {
    labelledPixel = k1;
    }
  
  changeflag = (f[0] == labelledPixel);

  /* Assuming we are segmenting objects with smooth boundaries, we give 
    * weight to local characteristics */
  for( j=0; j<8 ;j++ ) 
    {
    if ( (f[j] == labelledPixel) != changeflag ) 
      {
      changenum++;
      changeflag = !changeflag;
      }

    if (changeflag) 
      {
      if (j%2==0) 
        {
        res -= 0.7;
        }
      else 
        {
        res -= 1.0;
        }
      simnum++;
      } 
    }
   
  if (changenum < 3) 
    {
    if ( (simnum==4)||(simnum==5) )
      {
      return res -= m_CliqueWeight_2;
      }
    }

  if ( simnum==8 )
    {
    return res -= m_CliqueWeight_4;
    }
  else return res -=m_CliqueWeight_6; 

}

template<class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::GenerateData()
{
  /* First run the Gaussian classifier calculator and
   *  generate the Gaussian model for the different classes.
   *  Then generate the initial labelled dataset.*/

  m_InputImage = this->GetInput();
  m_VecDim     = InputPixelType::GetVectorDimension();  

  GenerateMediumImage();
 
  /* Pass the input image and training image set to the  
   *  classifier. For the first iteration, use the original image.
   *  In the following loops, you can use the result provided by a segmentation 
   *  method such as the deformable model. */
  m_ClassifierPtr->SetInputImage( m_InputImage );
  /* Create the training image using the original image or the output 
   *  of a segmentation method such as the deformable model. */
//  m_ClassifierPtr->SetTrainingImage( m_TrainingImage );

  /* Run the Gaussian classifier algorithm. */
  m_ClassifierPtr->Update();

  SetLabelledImage( m_ClassifierPtr->GetClassifiedImage() );

  ApplyGPImageFilter();
  /* Set the output labelled image and allocate the memory. */
  LabelledImageType outputPtr = this->GetOutput();

  if (m_RecursiveNumber == 0) {
  outputPtr->SetLargestPossibleRegion( m_InputImage->GetLargestPossibleRegion() );
  outputPtr->SetBufferedRegion( m_InputImage->GetLargestPossibleRegion() );
  }

  /* Allocate the output buffer memory. */
  outputPtr->Allocate();

  /* Copy labelled result to the Output buffer and set the iterators of 
    * the processed image.   */
  LabelledImageRegionIterator  
    labelledImageIt( m_LabelledImage, m_LabelledImage->GetBufferedRegion() );

  /* Set the iterators of the output image buffer. */
  LabelledImageRegionIterator  
    outImageIt( outputPtr, outputPtr->GetBufferedRegion() );

  while ( !outImageIt.IsAtEnd() )
    {
    LabelledImagePixelType labelvalue = 
      ( LabelledImagePixelType ) labelledImageIt.Get();
    outImageIt.Set( labelvalue );
    ++labelledImageIt;
    ++outImageIt;
    }

  m_RecursiveNumber++;

}

template<class TInputImage, class TClassifiedImage>
void 
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::ApplyGPImageFilter()
{
  /* Minimize f_1 and f_3. */
  MinimizeFunctional(); 
}

template<class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::MinimizeFunctional()
{
  /* This implementation uses the SA algorithm. */

  ApplyGibbsLabeller();

  RegionEraser();

#ifndef RGBGibbsPriorFilterNeedsDebugging 
  const unsigned int size = m_ImageWidth * m_ImageHeight * m_ImageDepth;
  const unsigned int rowsize = m_ImageWidth;

  m_Temp = 0;
  srand( static_cast<unsigned int>(time(NULL)) );

  while ( m_Temp < 2 * size ) 
    {
    unsigned int randomPixel = static_cast<unsigned int>( size * rand() / RAND_MAX );
    if ((randomPixel > (rowsize - 1)) && (randomPixel < (size - rowsize)) 
        && (randomPixel%rowsize != 0) && (randomPixel%rowsize != rowsize-1)) 
      {
      GibbsTotalEnergy(randomPixel); // minimized f_2; 
      }
    m_Temp++;
    }
#endif

}

template<class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::ApplyGibbsLabeller()
{
  /* Set the iterators and the pixel type definition for the input image. */
  InputImageRegionConstIterator  inputImageIt(m_InputImage, 
                                              m_InputImage->GetBufferedRegion() );

  InputImageRegionIterator  mediumImageIt(m_MediumImage, 
                                          m_MediumImage->GetBufferedRegion() );

  /* Set the iterators and the pixel type definition for the classified image. */
  LabelledImageRegionIterator  
    labelledImageIt(m_LabelledImage, m_LabelledImage->GetBufferedRegion());

  /* Variable to store the origin pixel vector value. */
  InputImagePixelType OriginPixelVec;

  /* Variable to store the modified pixel vector value. */
  InputImagePixelType ChangedPixelVec;

  /* Set a variable to store the offset index. */
  LabelledImageIndexType offsetIndex3D; offsetIndex3D.Fill(0);

  double * dist = new double[m_NumberOfClasses];

  const unsigned int size    = m_ImageWidth * m_ImageHeight * m_ImageDepth;
  const unsigned int frame   = m_ImageWidth * m_ImageHeight;
  const unsigned int rowsize = m_ImageWidth;

  inputImageIt.GoToBegin();
  mediumImageIt.GoToBegin();
  labelledImageIt.GoToBegin();

  unsigned int i = 0;
  while ( !inputImageIt.IsAtEnd() ) 
    {

    offsetIndex3D[2] =  i / frame;
    offsetIndex3D[1] = (i % frame) / rowsize;
    offsetIndex3D[0] = (i % frame) % rowsize;

    if ((i > (rowsize - 1)) && (i < (size - rowsize)) 
        && (i%rowsize != 0) && (i%rowsize != rowsize-1)) 
      {
      OriginPixelVec = inputImageIt.Get();
      GreyScalarBoundary(offsetIndex3D);
      for (unsigned int rgb = 0; rgb < m_VecDim; rgb++) 
        {
        ChangedPixelVec[rgb] = m_LowPoint[rgb];
        }
      /* mediumImageIt.Set(ChangedPixelVec); */
      } 
    else 
      {
      ChangedPixelVec = inputImageIt.Get();
      }

    const std::vector<double> & distValue =
      m_ClassifierPtr->GetPixelMembershipValue( ChangedPixelVec );

    LabelType pixLabel;
    if (distValue[1] > m_ObjectThreshold) pixLabel = 0;
    else pixLabel = 1;
    labelledImageIt.Set( pixLabel );
    
    i++;
    ++labelledImageIt;
    ++inputImageIt;
    ++mediumImageIt;
    }

  delete []dist;

}

/* Remove the tiny bias inside the object region. */
template<class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::RegionEraser()
{

  const unsigned int size = m_ImageWidth * m_ImageHeight * m_ImageDepth;
  if (m_Region)
    {
    delete [] m_Region;
    }
  m_Region = new unsigned short[size];

  if (m_RegionCount)
    {
    delete [] m_RegionCount;
    }
  m_RegionCount = new unsigned short[size];

  unsigned short *valid_region_counter = new unsigned short[size];

  LabelledImageRegionIterator  
    labelledImageIt(m_LabelledImage, m_LabelledImage->GetBufferedRegion());

  for ( unsigned int r=0; r<size; r++ ) 
    {
    m_Region[r] = 0;
    m_RegionCount[r] = 1;
    valid_region_counter[r] = 0;
    }

  LabelType i = NumericTraits< LabelType >::Zero;
  LabelType k = NumericTraits< LabelType >::Zero;
  LabelType l = NumericTraits< LabelType >::Zero;
  LabelType label;

  while ( !labelledImageIt.IsAtEnd() ) 
    {
    if ( m_Region[i] == 0 ) 
      {
      label = labelledImageIt.Get();
      if ( LabelRegion(i, ++l, label) > m_ClusterSize ) 
        {
        valid_region_counter[k] = l;
        k++;
        }
      }

    i++;
    ++labelledImageIt;
    }

  i = 0;
  unsigned int j; 
  labelledImageIt.GoToBegin();

  while ( !labelledImageIt.IsAtEnd() ) 
    {
    j = 0;
    while ( (m_Region[i] != valid_region_counter[j]) && (j < k) ) 
      {
      j++;
      }

    if (j == k) 
      {
      label = labelledImageIt.Get();
      labelledImageIt.Set(1-label);
      }
    i++;
    ++labelledImageIt;
    }

  delete []valid_region_counter;

}



template<class TInputImage, class TClassifiedImage>
unsigned int
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::LabelRegion(int i, int l, int change)
{
  unsigned int count = 1; 
  int m;
  const unsigned int frame   = m_ImageWidth * m_ImageHeight;
  const unsigned int rowsize = m_ImageWidth;


  LabelledImageIndexType offsetIndex3D; 
  offsetIndex3D.Fill(0);

  m_Region[i] = l;

  offsetIndex3D[2] = i / frame;
  offsetIndex3D[1] = (i % frame) / rowsize;
  offsetIndex3D[0] = (i % frame) % rowsize;

  if (offsetIndex3D[0] > 0) 
    {
    offsetIndex3D[0]--;
    m = m_LabelledImage->GetPixel(offsetIndex3D);
    if ((m==change)&&(m_Region[i-1]==0))
      {
      count += LabelRegion(i-1, l, change);
      }
    offsetIndex3D[0]++;
    }

  if (offsetIndex3D[0] < static_cast<IndexValueType>( m_ImageWidth-1 ) ) 
    {
    offsetIndex3D[0]++;
    m = m_LabelledImage->GetPixel(offsetIndex3D);
    if ((m==change)&&(m_Region[i+1]==0))
      {
      count += LabelRegion(i+1, l, change);
      }
    offsetIndex3D[0]--;
    }

  if (offsetIndex3D[1] > 0) 
    {
    offsetIndex3D[1]--;
    m = m_LabelledImage->GetPixel(offsetIndex3D);
    if ((m==change)&&(m_Region[i-rowsize]==0))
      {
      count += LabelRegion(i-rowsize, l, change);
      }
    offsetIndex3D[1]++;
    }

  if (offsetIndex3D[1] < static_cast<IndexValueType>( m_ImageHeight-1 ) ) 
    {
    offsetIndex3D[1]++;
    m = m_LabelledImage->GetPixel(offsetIndex3D);
    if ((m==change)&&(m_Region[i+rowsize]==0))
      {
      count += LabelRegion(i+rowsize, l, change);
      }
    offsetIndex3D[1]--;
    }

  return count;
      
}

template<class TInputImage, class TClassifiedImage>
void
RGBGibbsPriorFilter<TInputImage, TClassifiedImage>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  Superclass::PrintSelf(os,indent);

  os << indent << "NumberOfClasses: " 
     << m_NumberOfClasses << std::endl;
  os << indent << "MaximumNumberOfIterations: " 
     << m_MaximumNumberOfIterations << std::endl;
  os << indent << "ObjectThreshold: " 
     << m_ObjectThreshold << std::endl;
  os << indent << "BoundaryGradient: "
     << m_BoundaryGradient << std::endl;
  os << indent << "CliqueWeight_1: "
     << m_CliqueWeight_1 << std::endl;
  os << indent << "CliqueWeight_2: "
     << m_CliqueWeight_2 << std::endl;
  os << indent << "CliqueWeight_3: "
     << m_CliqueWeight_3 << std::endl;
  os << indent << "CliqueWeight_4: "
     << m_CliqueWeight_4 << std::endl;
  os << indent << "CliqueWeight_5: "
     << m_CliqueWeight_5 << std::endl;
  os << indent << "CliqueWeight_6: "
     << m_CliqueWeight_6 << std::endl;
  os << indent << "ClusterSize: " 
     << m_ClusterSize << std::endl;
  os << indent << "ObjectLabel: " 
     << m_ObjectLabel << std::endl;
  os << indent << "StartPoint: "
     << m_StartPoint << std::endl;
  if (m_TrainingImage)
    {
    os << "TraingImage: " << m_TrainingImage;
    }
  if (m_LabelledImage)
    {
    os << "TrainingImage: " << m_TrainingImage;
    }
  if (m_ClassifierPtr)
    {
    os << "ClassifierPtr: " << m_ClassifierPtr;
    }
}

} /* end namespace itk. */

#endif