1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkScalarImageKmeansImageFilter.h,v $
Language: C++
Date: $Date: 2006-04-05 13:59:37 $
Version: $Revision: 1.4 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkScalarImageKmeansImageFilter_h
#define __itkScalarImageKmeansImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkNumericTraits.h"
#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkMinimumDecisionRule.h"
#include "itkEuclideanDistance.h"
#include "itkSampleClassifier.h"
#include "itkScalarImageToListAdaptor.h"
#include "itkImageRegion.h"
#include "itkRegionOfInterestImageFilter.h"
#include <vector>
namespace itk
{
/** \class ScalarImageKmeansImageFilter
* \brief Classifies the intensity values of a scalar image using the K-Means algorithm.
*
* Given an input image with scalar values, it uses the K-Means statistical
* classifier in order to define labels for every pixel in the image. The
* filter is templated over the type of the input image. The output image is
* predefined as having the same dimension of the input image and pixel type
* unsigned char, under the assumption that the classifier will generate less
* than 256 classes.
*
* You may want to look also at the RelabelImageFilter that may be used as a
* postprocessing stage, in particular if you are interested in ordering the
* labels by their relative size in number of pixels.
*
* \sa Image
* \sa ImageKmeansModelEstimator
* \sa KdTreeBasedKmeansEstimator, WeightedCentroidKdTreeGenerator, KdTree
* \sa RelabelImageFilter
*
* \ingroup ClassificationFilters
*/
template <class TInputImage >
class ITK_EXPORT ScalarImageKmeansImageFilter :
public ImageToImageFilter< TInputImage, Image<unsigned char,
::itk::GetImageDimension<TInputImage>::ImageDimension> >
{
public:
/** Extract dimension from input and output image. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
/** Convenient typedefs for simplifying declarations. */
typedef TInputImage InputImageType;
typedef Image<unsigned char,
::itk::GetImageDimension<TInputImage>::ImageDimension> OutputImageType;
/** Standard class typedefs. */
typedef ScalarImageKmeansImageFilter Self;
typedef ImageToImageFilter< InputImageType, OutputImageType> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ScalarImageKmeansImageFilter, ImageToImageFilter);
/** Image typedef support. */
typedef typename InputImageType::PixelType InputPixelType;
typedef typename OutputImageType::PixelType OutputPixelType;
/** Type used for representing the Mean values */
typedef typename NumericTraits< InputPixelType >::RealType RealPixelType;
/** Create a List from the scalar image */
typedef itk::Statistics::ScalarImageToListAdaptor<
InputImageType > AdaptorType;
/** Define the Measurement vector type from the AdaptorType */
typedef typename AdaptorType::MeasurementVectorType MeasurementVectorType;
/** Create the K-d tree structure */
typedef itk::Statistics::WeightedCentroidKdTreeGenerator<
AdaptorType >
TreeGeneratorType;
typedef typename TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator<TreeType> EstimatorType;
typedef typename EstimatorType::ParametersType ParametersType;
typedef typename InputImageType::RegionType ImageRegionType;
typedef RegionOfInterestImageFilter<
InputImageType,
InputImageType > RegionOfInterestFilterType;
/** Add a new class to the classification by specifying its initial mean. */
void AddClassWithInitialMean( RealPixelType mean );
/** Return the array of Means found after the classification */
itkGetConstReferenceMacro( FinalMeans, ParametersType );
/** Set/Get the UseNonContiguousLabels flag. When this is set to false the
* labels are numbered contiguously, like in {0,1,3..N}. When the flag is set
* to true, the labels are selected in order to span the dynamic range of the
* output image. This last option is useful when the output image is intended
* only for display. The default value is false. */
itkSetMacro( UseNonContiguousLabels, bool );
itkGetConstReferenceMacro( UseNonContiguousLabels, bool );
itkBooleanMacro( UseNonContiguousLabels );
/** Set Region method to constrain classfication to a certain region */
void SetImageRegion( const ImageRegionType & region );
/** Get the region over which the statistics will be computed */
itkGetConstReferenceMacro( ImageRegion, ImageRegionType );
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(InputHasNumericTraitsCheck,
(Concept::HasNumericTraits<InputPixelType>));
/** End concept checking */
#endif
protected:
ScalarImageKmeansImageFilter();
virtual ~ScalarImageKmeansImageFilter() {}
void PrintSelf(std::ostream& os, Indent indent) const;
/** This method runs the statistical methods that identify the means of the
* classes and the use the distances to those means in order to label the
* image pixels. *
* \sa ImageToImageFilter::GenerateData()
**/
void GenerateData();
private:
ScalarImageKmeansImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
typedef std::vector< RealPixelType > MeansContainer;
MeansContainer m_InitialMeans;
ParametersType m_FinalMeans;
bool m_UseNonContiguousLabels;
ImageRegionType m_ImageRegion;
bool m_ImageRegionDefined;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageKmeansImageFilter.txx"
#endif
#endif
|