1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkScalarImageKmeansImageFilter.txx,v $
Language: C++
Date: $Date: 2005-07-26 15:55:08 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkScalarImageKmeansImageFilter_txx
#define _itkScalarImageKmeansImageFilter_txx
#include "itkScalarImageKmeansImageFilter.h"
#include "itkImageRegionExclusionIteratorWithIndex.h"
#include "itkProgressReporter.h"
namespace itk
{
template <class TInputImage>
ScalarImageKmeansImageFilter<TInputImage>
::ScalarImageKmeansImageFilter()
{
m_UseNonContiguousLabels = false;
m_ImageRegionDefined = false;
}
template <class TInputImage>
void ScalarImageKmeansImageFilter<TInputImage>
::SetImageRegion( const ImageRegionType & region )
{
m_ImageRegion = region;
m_ImageRegionDefined = true;
}
template< class TInputImage >
void
ScalarImageKmeansImageFilter< TInputImage >
::GenerateData()
{
typename AdaptorType::Pointer adaptor = AdaptorType::New();
// Setup the regions here if a sub-region has been specified to restrict
// classification on.. Since this is not ThreadedGenenerateData, we are
// safe...
if( m_ImageRegionDefined )
{
typename RegionOfInterestFilterType::Pointer regionOfInterestFilter
= RegionOfInterestFilterType::New();
regionOfInterestFilter->SetRegionOfInterest( m_ImageRegion );
regionOfInterestFilter->SetInput( this->GetInput() );
regionOfInterestFilter->Update();
adaptor->SetImage( regionOfInterestFilter->GetOutput() );
}
else
{
adaptor->SetImage( this->GetInput() );
}
typename TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample( adaptor );
treeGenerator->SetBucketSize( 16 );
treeGenerator->Update();
typename EstimatorType::Pointer estimator = EstimatorType::New();
const unsigned int numberOfClasses = this->m_InitialMeans.size();
ParametersType initialMeans( numberOfClasses );
for(unsigned int cl=0; cl<numberOfClasses; cl++)
{
initialMeans[cl] = this->m_InitialMeans[cl];
}
estimator->SetParameters( initialMeans );
estimator->SetKdTree( treeGenerator->GetOutput() );
estimator->SetMaximumIteration( 200 );
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
this->m_FinalMeans = estimator->GetParameters();
typedef typename InputImageType::RegionType RegionType;
typedef typename InputImageType::SizeType SizeType;
// Now classify the samples
//
typedef itk::Statistics::EuclideanDistance< MeasurementVectorType >
MembershipFunctionType;
typedef itk::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
typedef itk::Statistics::SampleClassifier< AdaptorType > ClassifierType;
typename ClassifierType::Pointer classifier = ClassifierType::New();
classifier->SetDecisionRule( decisionRule.GetPointer() );
classifier->SetSample( adaptor );
classifier->SetNumberOfClasses( numberOfClasses );
std::vector< unsigned int > classLabels;
classLabels.resize( numberOfClasses );
// Spread the labels over the intensity range
unsigned int labelInterval = 1;
if( m_UseNonContiguousLabels )
{
labelInterval = ( NumericTraits<OutputPixelType>::max() / numberOfClasses ) - 1;
}
unsigned int label = 0;
typedef typename MembershipFunctionType::Pointer MembershipFunctionPointer;
typedef typename MembershipFunctionType::OriginType MembershipFunctionOriginType;
for(unsigned int k=0; k<numberOfClasses; k++)
{
classLabels[k] = label;
label += labelInterval;
MembershipFunctionPointer membershipFunction = MembershipFunctionType::New();
MembershipFunctionOriginType origin( adaptor->GetMeasurementVectorSize() );
origin[0] = this->m_FinalMeans[k]; // A scalar image has a MeasurementVector of dimension 1
membershipFunction->SetOrigin( origin );
classifier->AddMembershipFunction( membershipFunction.GetPointer() );
}
classifier->SetMembershipFunctionClassLabels( classLabels );
// Execute the actual classification
classifier->Update();
// Now classify the pixels
typename OutputImageType::Pointer outputPtr = this->GetOutput();
typedef ImageRegionIterator< OutputImageType > ImageIterator;
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
RegionType region = outputPtr->GetBufferedRegion();
// If we constrained the classification to a region, label only pixels within
// the region. Label outside pixels as numberOfClasses + 1
if( m_ImageRegionDefined )
{
region = m_ImageRegion;
}
ImageIterator pixel( outputPtr, region );
pixel.GoToBegin();
typedef typename ClassifierType::OutputType ClassifierOutputType;
ClassifierOutputType * membershipSample = classifier->GetOutput();
typedef typename ClassifierOutputType::ConstIterator LabelIterator;
LabelIterator iter = membershipSample->Begin();
LabelIterator end = membershipSample->End();
while ( iter != end )
{
pixel.Set( iter.GetClassLabel() );
++iter;
++pixel;
}
if( m_ImageRegionDefined )
{
// If a region is defined to constrain classification to, we need to label
// pixels outside with numberOfClasses + 1.
typedef ImageRegionExclusionIteratorWithIndex< OutputImageType >
ExclusionImageIteratorType;
ExclusionImageIteratorType exIt( outputPtr, outputPtr->GetBufferedRegion() );
exIt.SetExclusionRegion( region );
exIt.GoToBegin();
if( m_UseNonContiguousLabels )
{
OutputPixelType outsideLabel = labelInterval * numberOfClasses;
while( !exIt.IsAtEnd() )
{
exIt.Set( outsideLabel );
++exIt;
}
}
else
{
while( !exIt.IsAtEnd() )
{
exIt.Set( numberOfClasses );
++exIt;
}
}
}
}
/**
* Add a new class for the classifier. This requires to explicitly set the
* initial mean value for that class.
*/
template <class TInputImage >
void
ScalarImageKmeansImageFilter<TInputImage >
::AddClassWithInitialMean( RealPixelType mean )
{
this->m_InitialMeans.push_back( mean );
}
/**
* Standard "PrintSelf" method
*/
template <class TInputImage >
void
ScalarImageKmeansImageFilter<TInputImage >
::PrintSelf(
std::ostream& os,
Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Final Means " << m_FinalMeans << std::endl;
os << indent << "Use Contiguous Labels " << m_UseNonContiguousLabels << std::endl;
os << indent << "Image Region Defined: " << m_ImageRegionDefined << std::endl;
os << indent << "Image Region: " << m_ImageRegion << std::endl;
}
} // end namespace itk
#endif
|