1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkShapePriorMAPCostFunction.txx,v $
Language: C++
Date: $Date: 2004-12-21 22:47:29 $
Version: $Revision: 1.7 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkShapePriorMAPCostFunction_txx_
#define __itkShapePriorMAPCostFunction_txx_
#include "itkShapePriorMAPCostFunction.h"
namespace itk {
/**
* Constructor
*/
template <class TFeatureImage, class TOutputPixel>
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::ShapePriorMAPCostFunction()
{
m_GaussianFunction = GaussianKernelFunction::New();
m_ShapeParameterMeans = ArrayType( 1 );
m_ShapeParameterMeans.Fill( 0.0 );
m_ShapeParameterStandardDeviations = ArrayType( 1 );
m_ShapeParameterStandardDeviations.Fill( 0.0 );
m_Weights.Fill( 1.0 );
}
/**
* PrintSelf
*/
template <class TFeatureImage, class TOutputPixel>
void
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::PrintSelf( std::ostream& os, Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "ShapeParameterMeans: " << m_ShapeParameterMeans << std::endl;
os << indent << "ShapeParameterStandardDeviations: ";
os << m_ShapeParameterStandardDeviations << std::endl;
os << indent << "Weights: " << m_Weights << std::endl;
}
/**
*
*/
template <class TFeatureImage, class TOutputPixel>
typename ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::MeasureType
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::ComputeLogInsideTerm( const ParametersType & parameters ) const
{
this->m_ShapeFunction->SetParameters( parameters );
typename NodeContainerType::ConstIterator iter = this->GetActiveRegion()->Begin();
typename NodeContainerType::ConstIterator end = this->GetActiveRegion()->End();
MeasureType counter = 0.0;
// count the number of pixels inside the current contour but outside the current shape
while( iter != end )
{
NodeType node = iter.Value();
typename ShapeFunctionType::PointType point;
this->GetFeatureImage()->TransformIndexToPhysicalPoint( node.GetIndex(), point );
if ( node.GetValue() <= 0.0 )
{
double value = this->m_ShapeFunction->Evaluate( point );
if ( value > 0.0 )
{
counter += 1.0;
}
else if ( value > -1.0 )
{
counter += ( 1.0 + value );
}
}
++iter;
}
MeasureType output = counter * m_Weights[0];
// std::cout << output << " ";
// std::cout << std::endl;
return output;
}
/**
*
*/
template <class TFeatureImage, class TOutputPixel>
typename ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::MeasureType
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::ComputeLogShapePriorTerm( const ParametersType & parameters ) const
{
// assume the shape parameters is from a independent gaussian distributions
MeasureType measure = 0.0;
for ( unsigned int j = 0; j < this->m_ShapeFunction->GetNumberOfShapeParameters(); j++ )
{
measure += vnl_math_sqr( ( parameters[j] - m_ShapeParameterMeans[j] ) /
m_ShapeParameterStandardDeviations[j] );
}
measure *= m_Weights[2];
// std::cout << parameters << ": ";
// std::cout << measure << " ";
return measure;
}
/**
*
*/
template <class TFeatureImage, class TOutputPixel>
typename ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::MeasureType
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::ComputeLogGradientTerm( const ParametersType & parameters ) const
{
this->m_ShapeFunction->SetParameters( parameters );
typename NodeContainerType::ConstIterator iter = this->GetActiveRegion()->Begin();
typename NodeContainerType::ConstIterator end = this->GetActiveRegion()->End();
MeasureType sum = 0.0;
// Assume that ( 1 - FeatureImage ) approximates a Gaussian (zero mean, unit variance)
// along the normal of the evolving contour.
// The GradientTerm is then given by a Laplacian of the goodness of fit of
// the Gaussian.
while( iter != end )
{
NodeType node = iter.Value();
typename ShapeFunctionType::PointType point;
this->GetFeatureImage()->TransformIndexToPhysicalPoint( node.GetIndex(), point );
sum += vnl_math_sqr( m_GaussianFunction->Evaluate( this->m_ShapeFunction->Evaluate( point ) )
-1.0 + this->GetFeatureImage()->GetPixel( node.GetIndex() ) );
++iter;
}
sum *= m_Weights[1];
// std::cout << sum << " ";
return sum;
}
/**
*
*/
template <class TFeatureImage, class TOutputPixel>
typename ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::MeasureType
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::ComputeLogPosePriorTerm( const ParametersType & itkNotUsed(parameters) ) const
{
return 0.0;
}
/**
*
*/
template <class TFeatureImage, class TOutputPixel>
void
ShapePriorMAPCostFunction<TFeatureImage,TOutputPixel>
::Initialize(void) throw ( ExceptionObject )
{
this->Superclass::Initialize();
// check if the mean and variances array are of the right size
if ( m_ShapeParameterMeans.Size() <
this->m_ShapeFunction->GetNumberOfShapeParameters() )
{
itkExceptionMacro( << "ShapeParameterMeans does not have at least "
<< this->m_ShapeFunction->GetNumberOfShapeParameters()
<< " number of elements." );
}
if ( m_ShapeParameterStandardDeviations.Size() <
this->m_ShapeFunction->GetNumberOfShapeParameters() )
{
itkExceptionMacro( << "ShapeParameterStandardDeviations does not have at least "
<< this->m_ShapeFunction->GetNumberOfShapeParameters()
<< " number of elements." );
}
}
} // end namespace itk
#endif
|