1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVoronoiSegmentationImageFilter.h,v $
Language: C++
Date: $Date: 2006-09-08 19:08:06 $
Version: $Revision: 1.33 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkVoronoiSegmentationImageFilter_h
#define _itkVoronoiSegmentationImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkVoronoiSegmentationImageFilterBase.h"
#include "itkImage.h"
namespace itk
{
/** \class VoronoiSegmentationImageFilter
*
* Perform the segmentation of 2D images (single channel) by Voronoi Diagram.
* Used as a node of the segmentation toolkits.
* The homogeneity operator here is the testing of mean and standar deviation value.
* By setting the tolerance level, the "internal" region was defined as those
* that is closed to the gold-standard value in the sense that the difference
* is within the tolerance value.
*
* See VoronoiSegmentationImageFilterBase for detail description of voronoi
* segmenation principles.
*
* The parameters here are:
* 1. the estimation of the statistics of the object. (mean and std.)
* 2. the tolerance for the classification. (around the mean ans std. estimated value).
*
* The parameters can also be automatically set by given a prior, as a binary
* image.
*
* Detail information about this algorithm can be found in:
* " Semi-automated color segmentation of anatomical tissue,"
* C. Imelinska, M. Downes, and W. Yuan
* Computerized Medical Imaging and Graphics, Vor.24, pp 173-180, 2000.
*
* \ingroup HybridSegmentation
*/
template <class TInputImage, class TOutputImage, class TBinaryPriorImage=Image<unsigned char,2> >
class ITK_EXPORT VoronoiSegmentationImageFilter:
public VoronoiSegmentationImageFilterBase<TInputImage,TOutputImage, TBinaryPriorImage>
{
public:
/** Standard class typedefs. */
typedef VoronoiSegmentationImageFilter Self;
typedef VoronoiSegmentationImageFilterBase<TInputImage,TOutputImage
,TBinaryPriorImage> Superclass;
typedef SmartPointer <Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(VoronoiSegmentationImageFilter,
VoronoiSegmentationImageFilterBase);
/** Convenient typedefs. */
typedef typename Superclass::BinaryObjectImage BinaryObjectImage;
typedef typename Superclass::IndexList IndexList;
typedef typename Superclass::IndexType IndexType;
typedef typename Superclass::RegionType RegionType;
typedef typename Superclass::InputImageType InputImageType;
/** Set/Get the Estimation of the mean pixel value for the object. */
itkSetMacro(Mean, double);
itkGetMacro(Mean, double);
/** Set/Get the estimation of the STD of the pixel value for the
* object. */
itkSetMacro(STD, double);
itkGetMacro(STD, double);
/** Set/Get the Tolearance of Mean for classifying the regions. */
itkSetMacro(MeanTolerance, double);
itkGetMacro(MeanTolerance, double);
/** Set the Tolearance of STD for classifying the regions. */
itkSetMacro(STDTolerance, double);
/** Get the Tolearance of Variance for classifying the regions. */
itkGetMacro(STDTolerance, double);
/** Set/Get the mean percent error. */
void SetMeanPercentError(double x);
itkGetMacro(MeanPercentError, double);
/** Set/Get the STD percent error. */
itkGetMacro(STDPercentError, double);
void SetSTDPercentError(double x);
/** Take a prior from other segmentation node, should be an
* binary object. */
void TakeAPrior(const BinaryObjectImage* aprior);
/** ImageDimension enumeration */
itkStaticConstMacro(InputImageDimension, unsigned int,
TInputImage::ImageDimension );
itkStaticConstMacro(OutputImageDimension, unsigned int,
TOutputImage::ImageDimension );
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(SameDimensionCheck,
(Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro(IntConvertibleToOutputCheck,
(Concept::Convertible<int, typename TOutputImage::PixelType>));
/** End concept checking */
#endif
protected:
VoronoiSegmentationImageFilter();
~VoronoiSegmentationImageFilter();
virtual void PrintSelf(std::ostream& os, Indent indent) const;
private:
double m_Mean;
double m_STD;
double m_MeanTolerance;
double m_STDTolerance;
double m_MeanPercentError;
double m_STDPercentError;
virtual bool TestHomogeneity(IndexList &Plist);
private:
VoronoiSegmentationImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
};
}//end namespace
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVoronoiSegmentationImageFilter.txx"
#endif
#endif
|